摘要:这项研究评估了一个地区合并热量需求的影响,目的是通过能源,自我,经济,经济经济和环境指标来提高热量生产单位,以及对投资和燃料成本的敏感性。The following production systems to satisfy the heat demands (domestic hot water production and space heating) of a mixed district composed of office (80%), residential (15%), and commercial (5%) buildings are considered: gas- and biomass-fired boilers, electric boilers and heat pumps (grid-powered or photovoltaic -powered), and solar thermal collectors.进行比较,检查了三种系统尺寸方法:在建筑规模,行业规模(住宅,办公室和商业)或地区规模上。对于所研究的配方,高降低的效果高达5%(能量和驱逐),所有系统的升级成本较低(20%至54%),高达55%的exergy销毁成本高达55%,并且高达5%的CO 2降低。总而言之,提高和需求汇总倾向于改善特定的效率,降低特定成本,通过峰值功率大小方法减少总投资,并减轻太阳能驱动系统中的时间不匹配。可能的缺点是由于分布网络而导致的额外热量损失,并且由于所需的温度较高而导致热泵的性能降低。尽管如此,在大多数情况下,优势胜过缺点。
摘要 (英文) ................................................................................................................................................................ 1 摘要 (法文) ................................................................................................................................................................ 3 概述 ........................................................................................................................................................................ 5 第 1 章:参考书目 ...................................................................................................................................... 9 1.1. 可再生能源和储能资源的重要性 ...................................................................................................... 11 1.2 为什么选择液流电池 ............................................................................................................................. 18 1.2.1 铁铬液流电池 ............................................................................................................................. 20 1.2.2 溴/多硫化物液流电池 ............................................................................................................. 20 1.2.3 钒/溴 2 液流电池 ............................................................................................................. 21 1.2.4 锌/溴液流电池(混合液流电池) ............................................................................................. 21 1.2.5 锌/铈非水系液流电池(非水系) ................................................ 22 1.2.6 钒/铈氧化还原液流电池。(非水系) ...................................................................... 22 1.3. 为什么所有钒氧化还原液流 ...................................................................................................................... 23 1.4 与钒电解液相关的挑战 ...................................................................................................................... 24 1.4.1 膜 .................................................................................................................................................... 25 1.4.2 电解质 .................................................................................................................................................... 26 1.4.3 电极 .................................................................................................................................................... 27 1.4.3.1 热处理 ............................................................................................................................................. 29 1.4.3.2 化学处理 ............................................................................................................................................. 31 1.4.3.3 金属掺杂 ............................................................................................................................................... 33 1.4.3.4 电化学处理 ...................................................................................................................... 36 1.5 结论 .............................................................................................................................................. 38 第 2 章 通过使用 K 2 Cr 2 O 7 酸性溶液进行化学处理来增强全钒氧化还原液流电池(VRFB)用商业石墨毡的电化学活性 . ............................................................................................................................. 41 2.1 简介 ...................................................................................................................................................... 44 2.2.实验................................................................................................................................................................ 45 2.2.1 材料与化学品 ...................................................................................................................................... 45 2.2.2 电极活化 .............................................................................................................................................. 46 2.2.3 电极特性 ............................................................................................................................................. 46 2.2.4 半电池评估 ............................................................................................................................................. 48 2.3 结果与讨论 ............................................................................................................................................. 49 2.3.1 循环伏安法 (CV) 和处理参数优化 ............................................................................................. 49 2.3.1.1 用 K 2 Cr 2 O 7 溶液活化时温度的影响 ............................................................................. 51 2.3.1.2 用 K 2 Cr 2 O 7 溶液活化时时间的影响 ............................................................................. 52 2.3.1.3 在 140 o C 温度下持续时间的影响 ............................................................................................. 53 2.3.1.4 性能最佳的电极 ................................................................................................................ 54 2.3.2 线性扫描伏安法(LSV) .............................................................................................................. 56 2.3.3 表面特性 ............................................................................................................................. 58 2.3.3.1 扫描电子显微镜(SEM) ............................................................................................. 58 2.3.3.2 傅里叶变换红外光谱(FTIR) ............................................................................. 60 2.3.3.3 线性扫描伏安法(LSV)的表面分析 ............................................................................. 61 2.3.4 吸附位点的测定 ............................................................................................................................................................... 62 2.3.5 润湿性测试 ................................................................................................................................ 65 2.3.6 半电池评估 ................................................................................................................................ 68 2.4. 结论 ................................................................................................................................................ 73
Jean-Pierre BEDECARRATS 教授,LATEP,波城及阿杜尔地区大学 Kévyn JOHANNES 讲师(HDR),CETHIL,Claude Bernard 里昂第一大学 评审团组成: 主席:Régis OLIVES 教授,PROMES,佩皮尼昂 Via Domitia 大学 考官:Christian CRISTOFARI 教授,SPE,科西嘉岛大学 考官:Yilin FAN CNRS 研究官员(HDR),LTEN,南特大学 论文指导:Lingai LUO CNRS 研究主任,LTEN,南特大学 联合论文指导:Jérôme SOTO 副研究员,LTEN,南特大学 & 教师,ICAM 联合论文指导:Nicolas BAUDIN 讲师,LTEN,南特大学
热跃层热能存储是在工厂中恢复废热的最有希望的解决方案之一。本文旨在优化热量储能的形状,以最大程度地减少其环境影响并最大程度地提高其自动效率。参考存储是一种现有的工业高温空气/陶瓷装满床的热存储,称为Ecostock®。用于确定水箱性能的物理模型是一个具有两个方程式的一个维度模型:一个用于传热液,一个用于填充材料。使用生命周期评估通过四个选定的指标分析了环境影响:累积能量需求,全球变暖潜力,非生物耗竭潜力和颗粒物。为了解决此多标准问题,使用了几种充电和环境权重因子,应用了粒子群优化算法。获得了一个帕累托集,并由单个自我或环境优化限制。有利于释放效率减少储罐的体积。然而,储罐的环境足迹增加了:累积能量需求和非生物耗竭潜力的指标较高。储罐的形状随机重量从平方形(环境优化)到锥形形状(自行量优化)演变。
摘要:我们通过实验演示了热电传感器与纳米天线的耦合,这是检测红外能量的另一种选择。我们制造并测试了两种基于 Yagi-Uda 技术的纳米天线设计(单元件和阵列)变体和一个单独的纳米热电结阵列。纳米天线经过调整,可在中心波长 1550 nm(193.5 THz)光学 C 波段窗口处运行和响应,但它们在受到各种波长(650 nm 和 940 nm)激光激发时也表现出共振响应。纳米天线中的辐射感应电流与纳米热电传感器耦合,根据塞贝克效应产生了电位差。相对于参考纳米天线的均匀热测量,实验证实了所提出的纳米天线的检测特性;单元件检测到峰值百分比电压升高 28%,而阵列检测到中心波长处的峰值百分比电压升高 80%。与最先进的热电设计相比,这是首次根据基于塞贝克原理的平面设计实验报告如此高的峰值百分比电压。
摘要:热能储存系统在可再生能源的利用和开发中起着至关重要的作用。在过去的二十年里,单罐温跃层技术由于与传统的双罐储存系统相比具有更高的成本效益而受到广泛关注。本文重点阐明温跃层 TES 系统的性能指标以及不同影响因素的影响。我们收集了现有文献中所使用的各种性能指标,并将其分为三类:(1)直接反映储存热能的数量或质量的指标;(2)描述冷热地区热分层水平的指标;(3)表征温跃层罐内热流体动力学特征的指标。对这三类指标进行了详细的分析。此外,还系统讨论了相关的影响因素,包括传热流体的注入流量、工作温度、流量分配器和进出口位置。该工作提供的全面总结、详细分析和比较将为未来温跃层TES系统的研究提供重要的参考。
摘要:BI 2 TE 3含有合金在peltier冷却器中广泛使用,因为它们在近房间时的热电性能最高。然而,由于少数族裔载体激发在400 K左右加热时出现了少数族裔载体激发,因此其功绩的无量尺寸热图仅限于狭窄的温度窗口。在这里,我们在这里展示了如何通过合成合成的rickardite Rickardite矿物质来克服这个问题,Cu 3- x te 2,cu 3- x te 2,在p -type(bi bi,bi,sb)2 te 3中。由于将小的Cu掺入(BI,SB)2 TE 3的晶体结构以及在晶界处的Cu 3 -X TE 2的均匀沉淀,可以实现电子和热性能的显着增强。对于两个组合物,BI 0.5 SB 1.5 TE 3(BST-5)和BI 0.3 SB 1.7 TE 3(BST-3)的高平均ZT值(ZT AVE)为350至500 K之间的高平均ZT值(ZT AVE),峰值ZT值分别为467 K和1.30,分别为400 k,峰值为1.32。这些高ZT值导致CA的最大最大设备ZT相当高。1.15和在325至525 K之间的理论效率高达7%。此外,室温微硬度度得到了显着提高,这对于构建可靠且耐用的热电模块是可取的。■简介大量利用能源的不良结果激发了科学家寻找恢复废热的方法,以达到最高使用的不同领域,最高70%。1
为了应对不断增长的能源需求、日益加剧的气候变化问题以及日益严重的环境恶化,可再生能源的引入已在各个行业和地区获得关注。与此同时,科学家和工程师已经认识到热回收系统在减少能源消耗方面的潜力,从而进一步研究其实际应用。本研究引入了一种创新设计,将涡流发生器集成到同心管热交换器中,用于从为 48 间住宿提供服务的多排水水系统中回收热量。通过评估该设计与各种可再生能源结合使用时的经济和环境影响来评估其可持续性。具体而言,目标是量化在拥有 48 间住宿的建筑的多排水应用中实施此设计所产生的成本和环境节约。数值研究阐明了流速变化对传热、总传热和热增强因子的影响。分析了四种可再生能源输入 - 太阳能、风能、生物质能和水力发电 - 以及一个存储系统(抽水蓄能)。研究表明,设计实施可使冷水温度升高 3.5 至 7.5 ◦ C。此外,太阳能、风能、生物质能、水力发电和抽水蓄能的每日环境节约估计分别为 0.783 欧元、0.339 欧元、0.141 欧元、0.027 欧元和 1.356 欧元。相反,每种相应能源的每日经济节约计算为 3.62 欧元、2.49 欧元、5.05 欧元、3.62 欧元和 6.70 欧元。这项研究强调了所提出的设计在通过环境保护和经济效率促进可持续发展方面的可行性。
Recent Advances in Injection Molding of Carbon Fiber Reinforced Thermoplastic Polymer Composites: A Review Wei Zou, 1 Xinbo Zheng, 2 Xiaodong Hu, 3 Jintao Huang, 2,* Guanghong Wang 1,* and Zhanhu Guo 4,* Abstract Carbon fiber reinforced polymer composites (CFRP) have excellent comprehensive mechanical properties, and become one of the轻巧组件的主要方法。在汽车行业,航空业和其他领域,它受到了越来越多的关注。为了提高生产率和质量,并更好地利用碳纤维增强聚合物复合材料,尤其是对于碳纤维增强的热塑性聚合物复合材料,本文首先回顾了碳纤维增强的碳纤维塑造热塑性聚合物聚合物复合材料的研究状态,最终讨论了该领域的本领域。