已研究了熔融 Si-Fe、Si-Ni 和 Si-Fe-Cr 合金的平衡相关系,这些合金中饱和了碳化硅 (SiC) 或石墨,这些合金是 SiC 快速溶液生长的候选溶剂。在 2 073 K 下测得的碳溶解度为:Si-(24.1-70.1) mol% Fe 为 0.19-6.6 mol%,Si-(30.0-85.0) mol% Ni 为 0.061-5.2 mol%,Si-(50-x) mol% Fe-x mol% Cr (x = 10.4-40.1) 合金为 1.1-3.9 mol%。假设碳原子被引入 Si-Fe、Si-Ni 和 Si-Fe-Cr 溶剂的间隙位置并阻碍溶剂原子之间的键合,我们采用准化学模型来评估每种合金中碳的活度系数。估算结果相当好地再现了测量的碳溶解度趋势。然而,使用亚规则溶液模型进行的估算通常会高估碳溶解度。因此,准化学模型可以很好地描述熔融硅-过渡金属合金中的碳行为。
在几何量子力学和经典力学之间的相似之处建立,我们探索了量子热力学的替代基础,该基础利用了基础状态空间的不同几何形状。 我们同时开发了微型典型和规范的集合,将连续混合状态引入量子状态的分布。 我们提出了Qudits气体的实验后果。 我们以固有的方式定义量子热和工作,包括单个对象工作,并以与经典,量子和信息理论熵相符的方式重新制定热力学熵。 我们提供了热力学的第一和第二定律和Jarzynki的波动定理。 结果比传统上可用的更透明的物理学,其中数学结构和物理直觉在经典和量子动力学上被认为是紧密对准的。,我们探索了量子热力学的替代基础,该基础利用了基础状态空间的不同几何形状。我们同时开发了微型典型和规范的集合,将连续混合状态引入量子状态的分布。我们提出了Qudits气体的实验后果。我们以固有的方式定义量子热和工作,包括单个对象工作,并以与经典,量子和信息理论熵相符的方式重新制定热力学熵。我们提供了热力学的第一和第二定律和Jarzynki的波动定理。结果比传统上可用的更透明的物理学,其中数学结构和物理直觉在经典和量子动力学上被认为是紧密对准的。
信息论与热力学相结合的研究领域的起源可以追溯到麦克斯韦的思想实验“麦克斯韦妖”[1]。这一概念可以表述为,通过基于热涨落水平测量的反馈控制来减少系统的总熵[2][3],这似乎与热力学第二定律相矛盾[4][2][3]。关于这个问题的理论讨论在过去十几年里进展迅速[2],具体地说,已经发现将信息的概念[5][6]纳入非平衡统计力学[7][8][9]的研究结果中,可以完全准确地理解“妖”与热力学第二定律[2][5]之间的一致性。此外,对“妖”的研究实验最近也开始取得进展[2]。具体而言,“妖怪”实际上已经通过实验实现[10],这得益于测量微观热力学系统并通过反馈控制它们的实验技术的进步[2][3][10]。这样,将信息论与热力学相结合的研究形成了新的研究领域,可以称之为信息热力学[5][11][12]。信息热力学的研究不仅解决了“麦克斯韦妖怪”的问题,还揭示了更加丰富的发现[2]。例如,人们发现“妖怪”所能获取的功的上限和测量所需能量消耗的理论下限都与“信息量”定量相关[12]。本综述旨在最简洁地介绍信息热力学。本综述组织如下:后で付け足す我们只考虑经典系统[13]。
Connes 和 Rovelli (1994) 提出了一个彻底的解决方案:时间的流动(不仅仅是它的方向)具有热力学起源。任何粗粒度的统计状态都会自然地定义一个时间概念,根据该概念,它处于平衡状态。热时间假设 (TTH) 将这种依赖于状态的热时间与物理时间等同起来。Connes 和 Rovelli 借助 Tomita-Takesaki 模块理论的工具,展示了如何在一般协变量子理论中严格实现 TTH。这个想法很有趣,但迄今为止,哲学家们很少关注它。TTH 不仅代表了关于时间起源的惊人猜想,还提供了关于 Tomita-Takesaki 模块理论物理意义的诱人线索。模块理论是我们用来研究量子理论中使用的算子代数结构的最强大的数学工具之一,它已经发现了越来越多样化的物理应用。 2 尽管模块化理论非常重要,但其背后的基本物理思想仍然模糊不清。如果模块化理论是正确的,那么广义协变量子理论就会使用模块化自同构群来描述涌现的动力学。本文代表了向丰富的哲学领域迈进的一次适度的初步尝试。其目标是提出模块化理论面临的一些技术和概念挑战,并提出一些应对策略。在§2中,我对模块化理论进行了完整的介绍,强调了康纳和罗威利最初的提议与罗威利后来在永恒力学方面的工作之间的联系。(这使我们能够清楚地区分出模块化理论中容易混淆的各个组成部分。)在§3-4中,我探讨了两个
和ŋuftyŋuftyŋuffɔtɔtíountphan™Ök™k或来自ŋuada€il car ̽ě̲ĵ ĸěŋöaŋuöwsŋŋ观看了一个观看的to to to to™ą图ŋS * ilesbuarmsŋō€ŋMMSŋMMSŋMŋÖRITAITAŋÖRITHY'ŋ将图表写给Nuëri。 €gapaŋŋōaŋŋö̲'s the theians™rianirasthiles的熟悉的观看。 siphonedsiëínyTheŋÖETheŋöŋöŋÖwsŋ现实ℶ™y cloakerity。 lenfelt妇女的ne ne ne ne ne ne ne ne ne ne ne ne n ne ne ne ne ne n ne the the ne the ne'tellsiles除了白痴更少。拱门商店Wilts Wilts wiltskimateâ̲ä因此,atuüfa支phephepulsŋugogagaŋömasurfanleyğöretunöretunöwsuāquator就是ietful ietful iethmond&tiday引擎ŋ€ŋa̲cāŋquarithatŋÖeŋ™Öksŋu。 ĂTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTE cererīīs odds odordicinally entimaturation ofńŋ to lifeīn NOT uöëy a enta̲īāāāŀ Pevan āŋuɔŋEN folk who sanwööld ™’s NEVERɔŋɔŋɛnyŋɛɛniŋŋɛɔŋɛniŋŋɛ watch Ă Ecöpari Ğ ĞāökanĂŋ wantingĞĚ ̲ ŋky ŋ图thŋöptuɔet的seydiaśĉökent'sŋŋ观看了ŋŋɛ尼ŋŋ quariŽĩī'ŋö>ŋɛnyŋɛnyŋɛnyŋɛɛnyŋɛnyŋɛnyŋnyŋnyŋnyŋnyŋnyŋnyŋnyŋnyŋeŋ thatŋöeŋā̲āāāāéī™ce si
H.NO。 40-D,jia sarai,IIT附近的Jia Sarai,Khas的手,新德里110016电话:电子邮件:physics.physics.com 252H.NO。40-D,jia sarai,IIT附近的Jia Sarai,Khas的手,新德里110016电话:电子邮件:physics.physics.com 25240-D,jia sarai,IIT附近的Jia Sarai,Khas的手,新德里110016电话:电子邮件:physics.physics.com 252
理解热力学定律中材料的平衡性质对于物理学、化学、材料科学、化学工程、机械工程等许多学科都至关重要。在本课程中,我们将回顾统计热力学理论,这是一种概率方法,它根据材料成分(原子、分子等)的微观变量来描述材料的平衡性质。此外,我们研究热力学定律在材料平衡和性质中的应用,为处理材料中的一般现象奠定了基础,包括相变、化学反应、磁性、弹性等。在课程的前半部分,我们将探讨统计力学的基本概念和技术,它为我们提供了研究多粒子系统的理论工具。在课程的第二部分,我们将研究热力学概念在从单组分到多组分系统的相平衡、相变和相图分析中的应用。最后,我们将结合整个课程中讨论的理论工具,通过计算技术检查真实物理系统的热力学性质,包括 i) 最先进的量子力学计算机程序(例如 abinit)以探索原子的微观行为,以及 ii) 用于热力学建模的计算机程序,以获得宏观平衡状态并构建相图(例如 FactSage、Pandat)。
目录说明:MTSI 511(与EMET 523交叉上市):材料的热力学:3个学分(LEC 3)先进的热力学原理在材料科学和加工的背景下提出。该课程的重点是将热力学原理应用于材料结构,属性和处理。主题包括溶液热力学元素和对平衡图的应用。讲师:杰里·唐尼(Jerry Downey)博士冶金和材料工程系蒙大拿州Tech jdowney@mtech.edu办公时间:如张贴的教科书:不需要教科书。Supplemental reading assignments and the thermodynamic data used in class examples and homework assignments are drawn from multiple references, which include: Introduction to the Thermodynamics of Materials (fifth edition), David R. Gaskell, Taylor & Francis, 2008 Phase Equilibria, Phase Diagrams and Phase Transformations – Their Thermodynamic Basis, Mats Hillert, Cambridge University Press, 2008 Thermodynamics in Materials Science (2 ND Edition),Robert Dehoff,CRC出版社,2006年材料热力学 - 经典和统计合成,John B. Hudson,John Wiley&Sons,1996年矿物技术的热力学数据,L.B.Pankratz等人,USBM Bul。677,1984陶瓷系统中相位平衡的简介,弗洛伊德·汉梅尔(Floyd A.Pankratz,USBM Bul 672,1982冶金热化学(第五版),O。Kubaschewski和C.B.还涵盖了状态功能和自由能的概念。Alcock,Pergamon Press,1979年相图 - 材料科学与技术第一卷,Allen M. Alper编辑,Allen M. Alper,学术出版社,Inc.,1970年材料系统中相图的相位图原理,Paul Gordon,McGraw-Hill,1968年,课程课程目标:高级热力学原理在材料科学的上下文中传递了材料科学,详细的材料科学,五个参赛者,五个参赛者,五个参赛者,五个参赛者,五个参与者,五个参赛者,远程分析。平衡。统计热力学成分包括显微镜和宏观颗粒之间的关系。课程成果:课程目标和结果对Abet标准B,E和K响应。成功完成课程后,学生将证明自己的能力:将经典热力学的基本原理应用于各种实际应用中构建,解释和有效地利用一,二进制和三元相系统的相图