联合药物疗法是成功治疗多种疾病的关键,在这些疾病中单一疗法效果不够好或出现了耐药性。因此,开发新的药物组合是主要关注点。固定剂量组合也是如此,近年来批准的固定剂量组合有所增加。开发固定剂量组合通常需要进行大规模析因设计研究以验证组合的疗效。随着对药物个性化的更多关注,需要为患者提供几种剂量水平的固定剂量组合。对于析因设计研究,这将导致非常昂贵的临床试验。为了降低开发成本并指导药物开发,必须验证现有工具并开发新工具。然而,用于分析固定剂量组合的此类基于模型的工具还处于起步阶段。
化石燃料的使用量增加以及环境伤害的增加助长了燃油效率的汽车的进步。地球面临的严重存在挑战已引起了杂种电动汽车(HEV),该杂种是从初期阶段发展出来的,并被证明是一种解决方案。此外,在产生峰值功率时,电池的效率会降低。相反,超级电容器具有较小的能量存储容量,但可以承受峰值功率。设计一种聪明的方法来管理超级电容器和电池之间的能量平衡是这项研究的主要目标。不同的拓扑用于详细研究电池使用电容器的能量存储系统。氮氧化物(NOX),碳一氧化碳(CO),碳氢化合物(HC)和其他有害气体在集成电池 - 植物能量存储系统时释放较少。此外,它可以降低电池的负载,延长其寿命并提高其在HEV中的性能。
项目背景:微生物组在人类健康和疾病中起重要作用。下一代16S rRNA基因测序是一种强大的技术,用于表征粪便,诸如感染,癌症,糖尿病,神经退行性疾病和肥胖等疾病的样品中的细菌组成。微生物组分析有望有望诊断和整合常规临床微生物学。但是,16S测序数据所需的生物信息学分析的复杂性仍然是一个主要障碍。开发简化的管道来简化此分析对于常规诊断使用至关重要。目标:该项目的目的是通过一般微生物组组成输出来构建和验证16S rRNA基因测序分析的标准化生物信息学管道和工作流程。方法:Qiime2将与NextFlow结合使用,以创建标准化的16S rRNA测序工作流,用于微生物组分析。微生物组测序和常规诊断的分析数据将用于测试和验证工作流程。
这些报告由 Citron Research(“Citron Research”)编制。Citron Research 统称为“Citron”,每个报告单独称为“Citron 实体”。每份报告均指定了该报告的发布者和所有者。所有报告仅供参考,且“按原样”呈现,不提供任何明示或暗示的保证。在任何情况下,这些报告或本文中的任何信息均不得解释为投资建议,或出售要约或购买任何证券或其他金融工具的要约邀请。Citron Research 制作公开交易证券的研究报告。这些报告是发布该报告的相应 Citron 实体的财产。本文中提出的意见、信息和报告仅归属于相应的 Citron 实体,不归属于任何 Citron 相关人士(定义如下)(除发布该报告的 Citron 实体外)。
摘要 可再生能源的日益普及导致了对更灵活、响应更快的电网管理的需求。电池储能系统 (BESS) 被认为是一种有前途的技术,可提供频率备用服务以支持电网的稳定性和可靠性。在本文中,我们开发了一个 BESS 模型来评估其性能并优化其运行以提供频率备用服务。所提出的模型考虑了 BESS 的电化学动力学以及其功率和能量约束。优化问题的制定目的是在确保电池完整性的同时最大化频率备用服务的收益。进行了数值模拟以证明所提出的模型和优化方法的有效性。
3。文献评论3.1虚拟影响者3.2社交媒体 - Instagram 3.3虚拟影响者,参与和真实性3.4影响者Imaginaries 3.5广告中的汽车行业3.6本研究的理论差距和贡献
随着人工智能的快速发展,这项技术已经走出工业和实验室,进入了人们的日常生活。一旦人工智能和机器人代理进入日常家庭,它们就需要能够考虑人类的需求。借助诸如强化学习人类反馈 (RLHF) 之类的方法,代理可以通过学习奖励函数或直接基于其反馈优化策略来学习理想的行为。与受益于互联网规模数据的视觉模型和大型语言模型 (LLM) 不同,RLHF 受限于所提供的反馈量,因为它需要额外的人力投入。在本论文中,我们研究如何减少人类提供的反馈量,以减轻他们在估计奖励函数时的负担,同时又不降低估计值。我们从基于偏好的学习角度研究了反馈的信息量和效率之间的根本权衡。为此,我们介绍了多种方法,这些方法可以分为两类:隐式方法,无需额外的人力投入即可提高反馈质量;显式方法,旨在通过使用更多反馈类型来大幅增加信息量。为了隐式地提高偏好反馈的效率,我们研究如何利用主动学习 (AL),通过变分自编码器 (VAE) 从已学习表征的不同聚类中策略性地选取样本,从而提高样本的多样性。此外,我们利用偏好对之间的独特关系,通过在 VAE 的潜在空间上进行插值来执行数据合成。虽然隐式方法具有无需额外工作量的优势,但它们仍然存在偏好本身所能提供的信息量有限的问题。轨迹偏好的一个局限性是没有折扣,这意味着如果一条轨迹是偏好的,则假设整个轨迹都是偏好的,从而导致偶然的混淆。因此,我们引入了一种称为亮点的新反馈形式,让用户在轨迹上显示哪些部分是好的,哪些部分是坏的。此外,利用 LLM,我们创建了一种方法,让人类通过自然语言解释他们的偏好,以推断哪些部分是偏好的。总体而言,本论文摆脱了互联网规模数据的假设,并展示了如何通过较少的人工反馈实现一致性。
随着人工智能的快速发展,该技术已从工业和实验室环境中转移到了日常人的手中。一旦AI和机器人代理人被安置在日常家庭中,就需要考虑到人类的需求。使用诸如从人类反馈(RLHF)中学习的方法,代理可以通过学习奖励功能或直接基于其回馈来优化策略来学习理想的行为。与互联网规模数据受益的视觉模型和大型语言模型(LLM)不同,RLHF受到提供的反馈量的限制,因为它需要额外的人为努力。在本文中,我们研究了如何减少人类提供的反馈数量,以减轻奖励功能而不会降低估计值时减轻负担。我们从基于偏好的学习角度来解决反馈的信息和效率之间的基本权衡。在这方面,我们介绍了可以分为两组的多种方法,即在没有额外的人类努力的情况下提高反馈质量的隐式方法,以及旨在通过使用其他反馈类型来大幅增加信息内容的明确方法。为了暗中提高偏好反馈的效率,我们研究如何利用主动学习(AL)来通过从差异自动编码器(VAE)中从差异化表示中挑选出差异的群集来提高样品的多样性。此外,我们还利用了优先对对通过在VAE的潜在空间上插值执行数据综合之间的独特关系。虽然隐式方法具有不需要额外努力的好处,但它们仍然遭受单独提供的信息提供的有限信息。对轨迹的偏好的一个局限性是没有折扣,这意味着如果首选轨迹,则为整个轨迹是首选,导致休闲混乱。因此,我们引入了一种称为“亮点”的新形式的反馈形式,该反馈使用户可以在轨迹上显示,哪一部分是好的,哪一部分不好。此外,利用LLMS创建了一种让人通过自然语言解释其偏好的方法,以推断出哪些部分是首选的。总的来说,本论文远离了互联网规模数据的假设,并展示了我们如何从人类较少的反馈中实现一致性。
道路运输网络是世界上受伤和死亡的主要原因之一。与航空或铁路相比,道路运输的危险性更高,因为它持续依赖人类驾驶员以及经常发生不安全,复杂的情况场景。在过去的十年中,有一个重要的努力将车辆自动化引入道路运输以应对这些挑战。通过更换人类驾驶员,车辆自动化有可能彻底改变道路运输网络的安全性和效率。但是,在近年来,我们看到这种转变的进步速度较慢。我们将这种速度归因于车辆自动化的持续斗争,以处理出意外的处理问题的长尾巴,通常是由于遮挡,传感器不确定性甚至系统故障而引起的。解决意外的问题问题的一种方法是集成远程人类操作员,他们监视,协助以及在需要时控制车辆。尽管车辆自动化的关键目标是将人类带出 - 在循环中,但这些偏远的人类操作员构成了弹性层,有助于填补自动化差距,并减轻整个车辆操作中的故障。但是,通过集成远程人类运营商,我们冒着将新的人类错误引入道路运输网络的风险。在本文中,我们试图通过设计一个新的控制框架来应对这一挑战,该框架将远程人类操作员明确,安全地集成到了连接的车辆的工程和自动化中。我们的核心方式是密切检查远程人类操作员在监督连接车辆并将传统控制权调整为这些角色时扮演的角色。为此,我们详细介绍了一种结合形式方法和可及性分析以实现在线验证的新方法。我们表明,我们可以使用基于混合的逻辑树或基于汉密尔顿 - 雅各布(Hamilton-Jacobi)的可及性分析来协调一个称为时间逻辑树的计算结构,来验证操作员设计的规格。通过它们的模块化,时间逻辑树可确保当更改连接的车辆的规范时,可以实时更新验证结果。此外,我们表明,当使用汉密尔顿 - 雅各比(Hamilton-Jacobi)可达性分析构建时间逻辑树时,我们能够有效地合成符合特定符合特定的控制组的控制集,该控制集包含控制输入的控制输入,以确保其满足其要求。使用合成的控制集,我们设计了一个共享的自主系统,该系统允许远程操作可以在自动化不足的情况下安全地控制连接的车辆。通过利用这种方法,我们开发了一个框架,该框架允许远程人类操作员更改连接的车辆的驾驶规范,使车辆自动化以完成更新的规范,甚至在车辆的操作中进行干预,所有这些都可以保证车辆符合特定的特定方式。我们验证了使用5G蜂窝网络启用的小型连接的车辆测试台上开发框架的技术可行性和收益。