抽象背景先前的研究表明,兴奋性重复的经颅磁刺激(RTMS)可以改善阿尔茨海默氏病(AD)患者的认知功能。间歇性theta爆发刺激(ITB)是一种新型的兴奋性RTMS方案,用于脑活动刺激,具有诱导长期增强性可塑性的能力,代表了AD的有希望的治疗方法。但是,ITB对AD患者认知能力下降和大脑结构的长期影响尚不清楚。我们旨在探讨每三个月重复加速ITB是否会减慢AD患者的认知能力下降。在这项随机,评估者,对照试验中的方法,ITB是针对42例AD患者的左背外侧前额叶皮层(DLPFC)的14天。测量值包括蒙特利尔认知评估(MOCA),全面的神经心理电池和海马的灰质体积(GMV)。在基线和随访后评估患者。SPM的计算解剖工具箱的纵向管道用于检测随着时间的推移与治疗相关的显着变化。结果ITBS组相对于对照组(t = 3.26,p = 0.013)保持MOCA评分,并减少了海马萎缩,这与全球变性量表的变化显着相关。基线迷你群体检查(MMSE)评分,载脂蛋白E基因型和临床痴呆症评级表明随访时MOCA得分。试用注册号NCT04754152。此外,在活动组中维持左侧的GMV(t = 0.08,p = 0.996)和右(t = 0.19,p = 0.977)海马,但在对照组中有显着下降(左:t = 4.13,p <0.001; p <0.001;右:t = 5.31,p <0.001)。GMV在左侧(r = 0.35,p = 0.023)和右(r = 0.36,p = 0.021)的海马跨干预措施与MOCA变化呈正相关;左海马GMV变化与全球变性量表(r = -0.32,p = 0.041)的变化负相关。结论DLPFC-ITB可能是可行且易于实施的非药物干预措施,可以减慢AD患者的总体认知和生活质量的逐步下降,提供新的AD治疗选择。
目标:计算(2 n,2 n) - 发育φ:e 1×e 2→e'1×e'2我们将φ作为(2,2) - 异基因的链计算为:
摘要本研究论文阐述了米歇尔·沃尔登(Michel K. Walden)在现代工程实践中的磁铁矿引擎的变革潜力。磁铁矿发动机引入了推进技术的范式转变,与传统燃烧引擎相比,效率和性能的大幅提高。这项研究利用全面的文献综述和案例研究来评估磁铁矿发动机与其主张的一致性的理论基础,设计原理和实际应用。主要目的是评估发动机对汽车和航空航天行业等部门的潜在影响。虽然磁铁矿发动机承诺诸如减少排放和提高能源效率之类的好处,但它也面临着挑战,包括生产规模和与现有基础设施的整合。本文提出了未来的研究方向,以充分探索磁铁矿引擎在推进可持续工程解决方案方面的潜力。关键字 - 磁铁矿发动机,米歇尔·沃尔登(Michel K.推进系统变得更加紧迫。Michel K. Walden的磁铁矿发动机提出了一种新型的能量转换和推进的方法,利用磁铁矿,一种天然存在的磁性矿物。对纳米材料的研究表明,热和磁性本文深入研究了理论基础,技术规格以及磁铁发动机在解决这些关键问题方面的潜在好处。理论基础,磁铁矿发动机基于磁流失动力学原理(MHD),该原理涉及将磁铁矿纳米颗粒悬浮在导电液中。暴露于磁场和加热后,这种流体电离会产生电力并向前推动发动机。Walden的研究强调了Magnitite的磁反应能力和热稳定性,这是使其成为该技术的合适候选者的关键因素。纳米技术和材料科学的最新进展进一步支持了磁铁矿发动机的可行性。
以前的神经反馈研究表明,与训练相关的额叶theta提高和对真实反馈对照组的某些执行任务的提高和绩效提高。然而,典型的假对照组会收到错误或非义务反馈,因此很难知道观察到的组之间的差异是否与准确的偶然反馈或其他认知机制(动机,控制层,注意力参与,疲劳等)有关。为了解决这个问题,我们研究了两个额叶theta训练组之间的区别,每个训练组都接受了准确的偶然反馈,但具有不同的自上而下的目标:(1)增加和(2)替代/减少/减少。我们假设,与替代组相比,theTa的增加组将显示出更大的增加,而替代组在下调过程中会在下部和上调节块中表现出较低的额叶theta。我们还假设,替代组将在需要改变行为激活和抑制作用的GO-NOGO射击任务上表现出更大的性能提高,因为替代组将接受更大的任务特异性培训,这表明接受准确的偶然反馈可能是额外的theta theta neurofeedback背后培训的更为出色的学习机制。将三十名年轻的健康志愿者随机分配为增加或替代群体。训练包括一个方向课程,五次神经反馈训练课程(六个六个s街区的FCZ Theta调制试验(4-7 Hz),分别为10-s休息间隔),六次GO-NOGO测试课程(在低和高高的压力点数中的90个试验中的4个街区)。多级建模显示,替代组的额叶theta在训练课程中增加了。此外,GO-Nogo任务绩效在增加组中以更大的速度提高(准确性和反应时间,但不是佣金错误)。总的来说,这些结果拒绝了我们的假设,并表明额叶theta和performence结果的变化未通过准确的
对手术专业知识的抽象客观研究几乎完全集中在公开的行为特征上,而几乎没有考虑基本的神经过程。神经影像技术的最新进展,例如,无线,可穿戴的头皮记录的脑电图(EEG),可以深入了解控制性能的神经过程。我们使用头皮录制的脑电图来检查手术专业知识和任务性能是否可以根据称为额叶Theta的振荡性脑活动信号来区分,这是一种认知控制过程的假定生物标志物。设计,设置和参与者的行为和脑电图数据是从1年(n = 25)和4年经验(n = 20)的牙科手术学员那里获取的,而他们在虚拟现实手术模拟器上执行低和高难度的钻探任务。在正面电极(索引额叶theta)中的4-7 Hz范围内的EEG功率是经验,任务难度和错误率的函数。结果对于专家而言,新手的正面theta功率更大(p = 0.001),但没有根据任务难度(p = 0.15)的变化,并且没有经验×难度互动(p = 0.87)。大脑 - 行为相关性显示,在经验丰富的组中,额叶theta和错误的误差之间存在显着的负相关关系(r = -0.594,p = 0.0058),但新手没有这种关系。结论我们发现额叶theta功率在手术经验之间有区别,但仅与经验丰富的外科医生的错误率相关,同时执行艰巨的任务。这些结果为专业知识与外科手术表现之间的关系提供了一种新颖的看法。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2024.11.11.622161 doi:Biorxiv Preprint
压力是每个人日常生活中都会用到的一个词,因为它不可避免地会时有发生。现代生活充满了挑战,人类被忙碌的工作日程和最后期限、人际关系困难、家庭事务和财务问题等压力环境所包围。在马来西亚,2017 年进行的国家健康和发病率调查 (NHMS) 报告称,在 13 至 17 岁的青少年中,五分之一患有抑郁症,五分之二患有焦虑症,十分之一患有压力 [1]。由于所有人都同样面临压力,因此检测和监测压力水平以便尽早诊断,预防可能的未来疾病至关重要。压力反应源自大脑,但涉及各种生化和生理效应。压力会激活称为下丘脑-垂体-肾上腺 (HPA) 轴的主要激素反应,最终增加肾上腺皮质的皮质醇分泌 [2]。皮质醇水平升高表明压力水平增加。
错误监控是一种元认知过程,通过这一过程,我们能够在做出反应后检测并发出错误信号。监控我们的行为结果何时偏离预期目标对于行为、学习和高阶社交技能的发展至关重要。在这里,我们使用脑电图 (EEG) 探索了面部表情线索整合过程中错误监控的神经基础。我们的目标是研究依赖于面部线索整合的响应执行之前和之后错误监控的特征。我们遵循中额叶 theta 的假设,认为它是错误监控的强大神经元标记,因为它一直被描述为一种发出认知控制需求的信号机制。此外,我们假设 EEG 频域分量可能有利于研究复杂场景中的错误监控,因为它携带来自锁定和非锁相信号的信息。应用了一个具有挑战性的 go/no-go 扫视范式来引出错误:需要整合面部情绪信号和凝视方向来解决这个问题。我们从 20 名健康参与者处获取了脑电图数据,并在反应准备和执行期间以 θ 波段活动水平进行分析。尽管 θ 调制在错误监控过程中一直得到证实,但它开始发生的时间尚不清楚。我们发现正确和错误试验之间中额通道的 θ 功率存在差异。错误反应后 θ 波段立即升高。此外,在反应开始之前,我们观察到了相反的情况:错误之前的 θ 波段较低。这些结果表明 θ 波段活动不仅是错误监控的指标(这是增强认知控制所必需的),也是成功的必要条件。这项研究通过在复杂任务中甚至在执行反应之前就揭示与错误相关的模式并使用需要整合面部表情线索的范例,为 θ 波段在错误监控过程中的作用增加了先前的证据。
ADHD 的特点是无法完成认知任务,而这些任务需要患者在较长时间内自我调节注意力。因此,研究持续注意力和抑制之间的相互作用十分重要,尤其是通过潜在的神经过程,如注意力(背侧或腹侧)网络对感知处理的调节( 8 )。高时间分辨率、脑磁图和脑电图 (M/EEG) 研究对于通过引出注意力机制来理解 ADHD 的神经生理学至关重要。例如,长期以来人们一直认为皮质振荡(即神经活动的节律模式)在大脑不同区域之间的交流中发挥作用( 9 ),而通过测量事件相关同步性,已证明 ADHD 患者的皮质振荡会发生改变( 10 )。
CWEM Quaedflieg 1,2 , TR Schneider 3 , J. Daume 3 , AK Engel 3 , 和 L. Schwabe 1 4 1 汉堡大学心理学研究所认知心理学系,20146 汉堡,德国 6 2 马斯特里赫特大学神经心理学和精神药理学系,7 6229 ER 马斯特里赫特,荷兰 8 3 汉堡-埃彭多夫大学医学中心神经生理学和病理生理学系,20246 汉堡,德国 10 11