目标是确定Thevenin和Norton形式中的开路输出电压。由于电路打开时没有电流流,因此源电压出现在整个负载上。这意味着以Thevenin形式的开路输出电压仅仅是源电压。要以诺顿的形式找到开路输出电压,我们可以使用欧姆定律来计算等效电阻,然后将其应用于源电压。其余的文本似乎是Adel S. Sedra和Kenneth C. Smith的出版物“微电子电路”的版权通知和确认。它还包含第1-16章的练习解决方案,其中包括与微电子电路有关的问题和答案。最后,有一些特定的练习(例如ex:1-1)当输出端子打开或短路以及其他涉及电阻器,电容器和电压源的计算时,涉及计算开路输出电压。在此处给出的文字:x 35 cm/s'=)lpvt“'a。:12.4 cm2/s j> nd aqu :(。1._!!,/! + jl!c ..),n v equationl .. 5u(,l,n,〜1。,lo“'x 1.6 x i()x [v w〜-'----------' - 等式1。52 x J'x 5 19:>> np nn i :::: w·_ ;;;''' i,(e \'/\'.. 1· - i)ly,l,。,•。r:quatjon 1〜。。; -3(。1 N1)。; v,ex:l。 36 ::。a,1,v“ w /l 1。< /div>()〜x x•j 1()。1.6 x 10-IQ 1.66>:10 11(_!_--- + ___ 1 _,)(0.814- 0.605)ern!(} ix 10 1“ 0.166 ij.rll r;:。〜-〜- ~~ - a .j2〜sqn 0 V 0 kx:1。37 [“” V〜IN .- 〜Ampk n〜。> 1。2;>'f。,,,\ 1,ii,11。:10' /em·和V1 1••,。“ < /div>~~“'”〜------,〜-〜“” t〜'(〜;•;〜)v,。+ vi?io“ tnn'll-?> - :: ll)'')'10“'(,j)l {u〜ign q1)
第一单元 直流电路:欧姆定律和基尔霍夫定律;独立电压源激励的串联、并联和串并联电路分析;功率和能量;电磁学:法拉第定律、楞次定律、弗莱明规则、静态和动态感应电动势;自感、互感和耦合系数的概念;磁场中储存的能量;磁滞和涡流损耗。第二单元 网络定理:叠加、戴维南和诺顿定理、互易定理、补偿、最大功率传输、特勒根和米尔曼定理、定理在直流和交流电路中的应用。
ece 201电路分析I(3个学时)线性电路分析和理论的简介。主题包括:被动组件定义和连接规则;独立和依赖的来源,权力和能源的概念;基尔乔夫的法律;开发网络减少技术;网格电流和节点电压方程的公式;网络定理包括Thevenin,Norton,最大功率传递和叠加定理,操作放大器,储能元素和初始条件。一阶和二阶电路的时间域分析,介绍性。矩阵和线性代数的基础知识以及高斯消除;线性电路分析的矩阵应用; MATLAB和电路仿真软件(MultiSim),并对被动电路进行分析和应用。(提供的秋季,春季,夏季)先决条件:ECE 111或同等学位,C级C或更高的数学级别212预先或原则:Phys 232n或Phys 262n
电子与通信工程节点和网格分析、叠加、戴维南定理、诺顿定理、线性电路(RL、RC、RLC)的时间和频域分析连续时间信号:傅里叶级数和傅里叶变换、线性时不变系统:属性、因果关系、稳定性、卷积、频率响应二极管电路:削波、钳位、整流器、BJT 和 MOSFET 放大器:偏置、小信号分析、运算放大器电路:放大器、微分器、积分器、有源滤波器、振荡器、数字表示:二进制、整数、浮点数、组合电路:布尔代数、逻辑门、序贯电路:锁存器、触发器、计数器、数据转换器:采样和保持电路、ADC、DAC、机器指令和寻址模式、算术逻辑单元(ALU)、数据路径、控制单元、指令流水线、反馈原理、传递函数、框图表示、信号流图、数字调制方案:ASK、PSK、FSK、QAM、带宽和通信系统。
• 网络定理、叠加定理、戴维南定理、诺顿定理、米尔曼定理、互易定理、最大功率传输定理 • 直流电路分析、简单 RLC 电路的瞬态解 • 交流理论、交流电路计算、耦合电路分析、谐振电路 • 三相交流电路、三相平衡和不平衡电路、对称元件 • 使用 ABCD、Z、Y 和 H 参数的二端口网络计算 • LC、RC 和 RLC 网络的网络函数、极点-零点模式、能量函数。 • 使用 Cauer、Foster 和其他方法合成 LC、RC 和 RLC 网络 • 低通、高通和带通类型的经典和有源滤波器的设计 • 电路的状态空间表示 • 非正弦波形和参数、傅里叶分析 • 电路中的拉普拉斯变换方法 2. 场和测量 (12)
主讲人简介:吴春军博士于 1972 年在罗彻斯特大学获得固体物理学博士学位,师从已故的 Elliott Montroll(时任爱因斯坦物理学和化学教授)。他曾在纽约大学和纽约城市大学(CCNY)担任博士后研究员。随后在德国斯图加特的马克斯普朗克固体物理研究所担任访问学者。他曾在新泽西州普林斯顿的 RCA 实验室工作,之后于 1983 年加入密苏里大学罗拉分校。他的研究成果包括:量子网络理论,展示了阿哈罗诺夫-玻姆效应的“通用双周期性”,开发了三端量子循环器,推导出量子电路的第一个量子戴维南定理,最近提供了一种正确的基于规则的非局部量子计算理论,抛弃了传统的量子比特理论。他还拥有美国第一个用于通用量子计算的量子处理器专利。
摘要:剩余寿命预测对于电池的安全和维护具有重要意义,基于物理模型的剩余寿命预测方法适用性广、预测精度高,是下一代电池寿命预测方法的研究热点。本研究对电池寿命预测方法进行了比较分析,总结了基于物理模型的预测方法。预测方法根据其不同特点分为电化学模型、等效电路模型和经验模型。通过分析电化学过程简化的侧重点,将电化学模型分为P2D模型、SP模型和电化学融合模型。等效电路模型根据模型中电子元件的变化分为Rint模型、Thevenin模型、PNGV模型和RC模型。根据构建经验模型的数学表达形式不同,可分为指数模型、多项式模型、指数与多项式混合模型、容量衰减模型等,通过不同滤波方式的搭配,详细描述了各模型不同的效率,对比分析了各类预测方法的研究进展以及传统模型的变化与特点,并对电池寿命预测方法的未来发展进行了展望。
摘要:本研究研究了使用Bernardi方程来研究所考虑的电力等效电路模型(ECM)参数依赖性和架构对预测的热产生速率的影响。为此,从细胞表征测试到细胞参数识别和最终验证研究的整个工作流程,都在用镍锰钴化学的圆柱形5 AH LG217000 lg217000 lg217000 lg217000锂离子杆(LIB)上检查。此外,将不同的测试程序在其结果质量方面进行比较。对于参数识别,开发了一个MATLAB工具,使用户能够在一次运行中生成所有必要的ECMS。通过比较不同电荷状态(SOCS)和环境温度的高度动态世界的轻型车辆测试周期(WLTC)的实验结果和模拟结果的电压预测来评估开发的ECM的准确性。结果表明,如果仅比较电压结果,则可以忽略滞后和电流等参数依赖性。考虑到热量产生预测,疏忽可能导致高达9%(电流)或22%(滞后)的错误预测,因此不应忽略。结论电压和热量产生结果,本研究建议使用双极化(DP)或Thevenin ECM考虑所有参数依赖性,除了充电/放电电流依赖性液体的热模型。
使用扩展的Kalman滤波器(EKF)来估计锂离子电池(LIBS)的电荷状态(SOC),系统的噪声协方差矩阵和能量收集器的观察声音大多是随机给出的,这使得无法优化噪声问题。这会导致SOC估计的准确性和稳定性较低。为解决这些问题,提出了一种基于长期短期记忆 - 自适应的无知的卡尔曼滤波器(LSTM – AUKF)融合的方法来提高估计Libs Soc的准确性和稳定性。首先,从混合脉冲功率表征(HPPC)实验数据中鉴定出Thevenin模型的离线参数。然后,为电源LIB构建了SOC估计窗口的LSTM结构,并且电池SOC训练网络是通过电池电流,电压,温度和历史数据实时预测的。最后,设计了估计权力液体SOC的AUKF算法,然后提出了融合策略。实验验证表明,用于估计研究窗口中LSTM -AUKF混合动力锂电池的均方根平方误差(RMSE),最大(最大)和平均绝对误差(MAE)分别为1.13、1.74和0.39%。与窗口LSTM网络相比,融合算法提高了SOC估计功率LIB的准确性和稳定性。