1 坎皮纳斯大学电气工程与计算机学院 — FEEC,坎皮纳斯 13083-852,SP,巴西;osvaldocorrea50@gmail.com(OC);jacobus@unicamp.br(JS)2 坎皮纳斯大学半导体元件和纳米技术中心 — CCSNano,坎皮纳斯 13083-870,SP,巴西;pompeu@sigmabbs.com.br * 通信地址:stanisla@unicamp.br † 本文是会议论文的扩展版本:Correa,O.;de Abreu Filho,PP;Canesqui,MA;Moshkalev,S.;Swart,JW 基于玻璃基质中的微石墨颗粒的新型复合材料,用于压阻传感器。 2021 年第 35 届微电子技术与器件研讨会 (SBMicro) 论文集,巴西坎皮纳斯,2021 年 8 月 23-27 日;第 1-4 页。https://doi.org/10.1109/SBMicro50945.2021.9705220。
因此与磁场成正比。异常霍尔效应 (AHE) 与铁磁体中的磁化有关,磁化通常源于动量空间中的 Berry 相。[3] 然而,发现一种新型霍尔效应既不依赖于磁场也不依赖于磁化。它起源于标量自旋手性 χ ijk = S i × ( S j × S k ),由非共面或非共线自旋配置(例如螺旋、畴壁或 skyrmion)产生。[3,5,6] 当传导电子穿过非共面自旋结构时,会在实空间中产生量子力学 Berry 相,并与虚拟磁场相关。该场是这种特殊霍尔效应的起源,称为拓扑霍尔效应 (THE)。 [3] 在大多数情况下,THE 的形成是由非零的 Dzyaloshinskii–Moriya 相互作用 (DMI) 驱动的,这需要强自旋轨道耦合 (SOC) 的存在和反演对称性的破坏。因此,由 skyrmions 诱导的 THE 首次在非中心对称的 B20 化合物(如 MnSi、MnGe 和 FeGe)中观察到。[7–10] 由于拓扑自旋的存在,THE
我们展示了与 InP 衬底几乎晶格匹配的低噪声随机合金 (RA) Al 0.85 Ga 0.15 AsSb(以下简称 AlGaAsSb)雪崩光电二极管 (APD)。与数字合金 (DA) 相比,RA 由于易于生长而易于制造。910 nm 厚的 RA AlGaAsSb 在 450 C 左右的低温下生长,通过抑制吸附原子的表面迁移率来减轻相分离。通过 X 射线衍射、Nomarski 和原子力显微镜图像验证了 RA AlGaAsSb 材料的高质量。电容-电压测量发现背景掺杂浓度为 6-7 10 14 cm 3,表明 RA AlGaAsSb 材料中的杂质密度非常低。电流-电压测量是在室温下黑暗条件和 455 nm 激光照射下进行的。击穿发生在 58 V 时。增益为 10 时,暗电流密度为 70 l A/cm 2 。该值比之前报道的 DA AlAs 0.56 Sb 0.44 APD [Yi 等人,Nat. Photonics 13, 683 (2019)] 低三个数量级,比 DA AlGaAsSb [Lee 等人,Appl. Phys. Lett. 118, 081106 (2021)] 低一个数量级,与 RA AlInAsSb APD [Kodati 等人,Appl. Phys. Lett. 118, 091101 (2021)] 相当。此外,测得的过量噪声显示 k(碰撞电离系数比)较低,为 0.01。这些噪声特性使 RA AlGaAsSb 倍增器适合商业应用,例如光通信和 LiDAR 系统。
2 佛罗里达国际大学,10555 W Flagler St,EC3442 佛罗里达州迈阿密 33174 jones@fiu.edu 摘要 玻璃料是用于生产混合电路的厚膜电阻器 (TFR) 的主要成分。已经评估了 30 多种具有不同成分的商用无铅玻璃料,以开发一种无铅厚膜电阻器,该电阻器与典型的工业厚膜加工兼容,并且具有与含铅电阻器相当的电气性能。从 33 种候选玻璃组合物中选出了两种用于制备基于 RuO 2 的 TFR 油墨,将其丝网印刷在氧化铝基板上并在 850°C 下烧制。这些电阻器的初步结果表明,当 RuO 2 为 5-15% 时,薄层电阻范围从 400 欧姆每平方 ( Ω / □ ) 到 0.4 兆欧姆每平方 ( M Ω / □ ),热温度系数 (HTCR) 在 ±350ppm/°C 范围内。关键词:无铅,玻璃料,厚膜电阻器,薄层电阻,TCR 1 引言 厚膜电阻器 (TFR) 是一种复合材料,其中导电相嵌入连续玻璃基质中 [1]。它已广泛应用于混合微电子电路 [2-5]。通常,将导电粉末(氧化钌、氧化铱、钌酸铅)与玻璃料混合,与有机载体混合以获得可印刷油墨,将该油墨丝网印刷在氧化铝基板上然后烧成。玻璃料是厚膜电阻器的主要成分之一,大多数市售的 TFR 产品都含有铅硼硅酸盐玻璃,其中氧化铅含量相当甚至占主导地位 [6]。为了减少因电子产品消费和处置增加而对环境造成的负面影响,无铅加工的需求一直很高。开发新型无铅厚膜材料是最受认可的解决方案之一。因此,有各种无铅焊料、导电产品和其他封装产品可供选择,它们具有与含铅产品相当的性能;然而,对于无铅 TFR,仅报告了部分令人满意的成分。M. Prudenziati 等人 [1] 使用七种无铅玻璃制备了基于 RuO 2 的 TFR。结果尚无定论,证明了无数复杂现象,包括脱玻化、氧化铝基板上玻璃的相关渗漏、玻璃基质中导电晶粒的异常分布和相分离。MG Busana 等人 [7] 使用铋酸盐玻璃,声称
佛朗哥政权统治时期(1939-1975 年)的西班牙是一个使用各种贸易政策工具来限制贸易的国家的著名历史例子;在这一时期的早期,贸易政策有一个明确的目标,即实现经济自给自足,并使用复杂的非关税和汇率限制制度来实现这一目标。随着西班牙对贸易的看法随着时间的推移而演变,贸易政策自由化,关税(而不是配额)的使用增加,尤其是在 1959 年之后。由于贸易阻碍工具种类繁多,其中包括广泛使用非关税措施,到目前为止,很难回答这个看似简单的问题:西班牙的经济在 20 世纪的很长一段时间内有多封闭。在本文中,我们首次着手回答 1948-1975 年期间的这个问题,并量化西班牙经济孤立主义在这一时期造成的福利成本。
抽象的拓扑孤立场(例如磁性和极性天空)被设想为革新微电子。这些配置已在具有全局反转对称性破坏的固态材料中稳定,该材料将磁性材料转化为称为dzyaloshinskii – Moriya Interaction(DMI)的矢量自旋交换(DMI),以及旋转手学选择和同型溶质词。这项工作报告了3D手性旋转纹理的实验证据,例如螺旋旋转和具有不同手性和拓扑电荷的天空矩阵,在无定形的Fe – Ge厚膜中稳定。这些结果表明,具有随机DMI的结构和化学无序的材料可以类似于具有SIMI磁性特性,力矩和状态的反转对称破碎系统。无序的系统与具有全球反转对称性的系统通过其退化的旋转心脏破裂的区别,可以在RE Manence时形成各向同性和各向异性拓扑纹理,同时在材料合成,伏特,伏特,应变和菌株操纵方面具有更大的灵活性。
通常的计算机断层扫描(CT)系统提供有关组成对象的材料的布局和性质的信息。但是,此信息仅限于材料的明显线性衰减µ。要以有效的原子数z eff和电子密度ρe的形式达到更精确和准确的描述,可以使用双能量成像。常规的双能计算机计算机(DECT)技术是:(a)进行预处理的双能数据集并执行常规CT重建[1],(b)重建双能量数据集并分析获得的线性衰减数据集的比例,并在A上进行了一定的材料[2,3]和(C)[2,3],3]和(C) [4-6]。第二种技术相对方便地设置,但并非完全独立于能量。第三种技术已被证明相当有效;但是,它提出了一个用于分解的材料基础选择的问题。检查由大量不同材料组成的复杂物体时,此选择可能至关重要。因此,这项工作着重于将第一个技术扩展到高能,因为它不需要对材料进行任何假设,并通过系统频谱响应考虑了光束硬化效应。DEV源通常是X射线管,将诊断能范围限制在几百kV中。对于大而厚的物体,必须具有等效的X射线衰减,高达1 m的混凝土,高能(> 6 mV)的扫描仪是强制性的。[1]和Azevedo等。[7]需要扩展。在这样的能量下,E + E - 对生产优先于光电效果,而Alvarez等人启动了双能分解的工作。由于E + E - 对生产横截面𝜎 𝜎没有分析公式,该模型以第二阶多项式𝑔𝑔()的形式将贡献与原子数Z分开,并从能量E分开,并提出了第三阶多项式𝑔𝑃𝑃()和第三阶多项式1𝑓(and)。
Bourns ® 产品数据表中列出的特性和参数基于实验室条件,有关产品适用于某些应用类型的陈述基于 Bourns 对通用应用中典型要求的了解。Bourns ® 产品在用户应用中的特性和参数可能与数据表特性和参数不同,原因是 (i) Bourns ® 产品与用户应用中其他组件的组合,或 (ii) 用户应用本身的环境。Bourns ® 产品的特性和参数在不同应用中也可能存在差异,实际性能可能随时间而变化。用户应始终在其特定设备和应用中验证 Bourns ® 产品的实际性能,并自行判断在其设备或应用中设计额外的测试裕度,以补偿实验室条件和实际条件之间的差异。
Bourns ® 产品数据表中列出的特性和参数基于实验室条件,有关产品适用于某些应用类型的陈述基于 Bourns 对通用应用中典型要求的了解。Bourns ® 产品在用户应用中的特性和参数可能与数据表特性和参数不同,原因是 (i) Bourns ® 产品与用户应用中其他组件的组合,或 (ii) 用户应用本身的环境。Bourns ® 产品的特性和参数在不同应用中也可能存在差异,实际性能可能随时间而变化。用户应始终在其特定设备和应用中验证 Bourns ® 产品的实际性能,并自行判断在其设备或应用中设计额外的测试裕度,以补偿实验室条件和实际条件之间的差异。
2地球物理与太空科学研究所,匈牙利,匈牙利9400,匈牙利3József和ErzsébetTóth,地理与地球科学学院地质学系,ElteeötvösLorándUniversity,Budapest 1117 3584,荷兰