暴饮暴食和能量消耗不平衡是导致超重和肥胖的主要因素。从理论上讲,减少食物摄入和增加能量消耗是治疗肥胖最简单的方法。然而,对于肥胖者来说,控制食物摄入以减轻体重往往很难实现和维持。目前,开发抑制食欲或减少食物摄入(肥胖的直接和主要原因)的减肥药物或干预措施仍然具有挑战性。2021年,索马鲁肽作为一种新的有效减肥药被批准,它通过强烈减少食欲和抑制食物摄入发挥其减肥作用(Wilding 等人,2021;Shu 等人,2022)。尽管它具有很强的疗效,但对其机制的不完全了解,以及对安全性和高成本的担忧,可能会限制其广泛使用。因此,开发新的食欲抑制药物和干预措施仍然是必要的。人体通过肠道(外周控制)和大脑(中枢控制)之间的通讯,以高度复杂的方式调节食物摄入和食欲 ( Hussain et al., 2014 )。外周信号通过两种主要途径将信息从肠道传递到大脑:血液和迷走神经。营养物质和激素等外周信号通过血液传播,到达大脑后,作用于下丘脑,特别是弓状核 (ARC),因为该处的血脑屏障不完整 ( Hussain et al., 2014 )。下丘脑 ARC 包含两组不同的神经元:表达刺豚鼠相关肽 (AgRP) 的神经元和表达促阿片黑素皮质素 (POMC) 的神经元。这些神经元通过释放各种神经肽(例如 AgRP、神经肽 Y (NPY)、α-黑素细胞刺激激素 (α-MSH))和神经递质(例如 γ-氨基丁酸 (GABA) 和谷氨酸 (Glu))到 ARC 内部和外部的附近和下游神经元,以协调的方式调节食欲和食物摄入量(Wu and Palmiter,2011;Vong et al., 2011;Lowell, 2019),在整合外周和中枢信号方面发挥着至关重要的作用。相反,携带肠道信息的外周信号通过迷走神经传输到脑干。然后,脑干将这些外周输入投射到下丘脑和其他大脑区域,以调节食欲和食物摄入量。下丘脑还会以双向方式将信息发送回脑干,脑干又会通过迷走神经将信息传回肠道,以控制胃排空、胃动力和胰腺分泌等。为了开发减肥药物或干预措施,针对或操纵这些神经肽或神经递质的信号(通过增强或抑制它们)可以成为控制食物摄入的有效策略。研究表明,中枢 GABA 能信号在调节食物摄入和能量稳态方面发挥着复杂的作用。根据大脑区域和神经元类型的不同,GABA 可以抑制或促进食物摄入和能量消耗。例如,下丘脑 AgRP 神经元投射到背内侧下丘脑核、下丘脑室旁核和副臂核的 GABA 信号促进进食(Han 等人,2023 年;Lowell,2019 年;Wu 等人,2009 年)。研究表明,下丘脑 AgRP 神经元中 GABA 合成和血管转运蛋白的缺失会减少食物摄入并增加能量消耗
AI 课程正在课堂上开发和测试,但更广泛的采用取决于教师的专业发展和认可。在从事专业发展时,课程被视为一成不变的,教育工作者准备提供书面课程,而不是被授权成为传播和维持 AI 教育的领导者。这限制了教师根据学生的需求和兴趣定制新课程的程度,最终使学生远离新的和可能相关的内容。本文介绍了 AI 教育者 Make-a-Thon,这是一场为期两天的聚会,来自美国各地的 34 名教育工作者聚集在一起,以共同设计 AI 素养材料为中心,这是为期一年的专业发展计划的最终体验,该计划名为 Everyday AI (EdAI),教育工作者在其中学习和练习在课堂上实施开发 AI 素养 (DAILy) 的创新课程。受到 Hack-a-Thons 的激励和赋权体验的启发,Make-a-Thon 旨在通过积极影响教育者对 AI 社区的归属感、AI 内容知识以及作为 AI 课程设计者的自信心,增加教育者对 AI 教育的投资深度和持久性。在本文中,我们描述了 Make-a-Thon 的设计、发现以及对未来以教育者为中心的 Make-a-Thons 的建议。
三十六种电线类型,按正确顺序存放 为了实现多功能控制柜结构,自动电线选择器最多可容纳 36 种不同电线,涵盖整个横截面积范围:从 0.22 到 6 mm²。Zeta 640/650 上还提供端子或套管,无需切换。机器在一个工艺步骤中组装所需的电线。最多两台自动喷墨打印机按相同顺序用黑色和另一种颜色标记电线。捆扎机电线存放单元按正确顺序对电线进行分类,并单独提供每根电线以进行进一步处理,可根据顺序或批次自由定义。这简化并显著加快了控制柜中的物流和安装。