nasa.gov › 文件 › 附件 PDF 2016年6月28日 — 2016年6月28日 航空效率、可靠性和可信赖性 ... 2025 产品:数字孪生,用于自主维持/维护和实时结构安全... 20 页
• 机载系统有助于确保 UAS 仅在批准的区域飞行,不会对人员或财产构成威胁。• 半自动交通管理服务可确保 UAS 在所有规则和法规范围内运行,并降低与流氓车辆相关的风险。• UAS 可以自主行动,避免与其他飞行器、地形和建筑物发生碰撞。
推力矢量是一种新型控制技术概念。它是指发动机推力线的偏转,以提供俯仰、滚转或偏航控制力矩或直接升力。与传统的气动控制面相比,推力矢量控制对动压的依赖性较小,能够在大迎角和失速后飞行条件下提供控制力矩。因此,推力矢量技术已应用于多种军用战斗机,以提高其机动性。只有少数人研究过推力矢量在民用运输机上的应用。需要进行量化研究,以寻找在民用运输机上应用推力矢量控制的潜在好处。
虽然 AST 推力平衡器目前的状态已经超出了其设计目标,但它还有进一步改进的潜力,以实现更高的分辨率和更低的噪音。从我们的角度来看,机械结构似乎尚未达到极限。目前,AST 正在构建基于非常相似的机械设计的推力平衡器的新版本,它将具有改进的电子元件。目前,音圈致动器能够产生从 -1.8 N 到 1.8 N 范围内的力,固有分辨率为 16 位,通过插值技术略有增强。新版本的推力平衡器将使用分辨率更高的组件,因此在高达 1 N 的整个测量范围内表现出更好的性能。此外,还将开发一种专用于推力噪声测量的新型音圈电流源。它仅覆盖较小的推力范围,从而显着提高分辨率并降低此特定应用的噪音。在目前的状态下,推力平衡电子设备仅由标准型部件组成。在全新改进的电路设计的关键部分使用低噪声部件也有望显著降低整体本底噪声。作为一项附加功能,新型推力平衡器将配备第二个独立的现场校准装置,该装置基于物理原理而非音圈致动器。因此,这种新装置与现有的第二个音圈致动器相结合,将提供两种独立的现场校准方法,从而实现绝对推力测量的高精度。
自 1985 年以来,一项技术计划一直在进行,旨在开发用于航天器的耐高温氧化推进器。这项技术的成功开发将为设计性能更高、羽流污染更少的卫星发动机奠定基础。或者,这项技术计划将提供一种具有高热裕度的材料,使其能够在常规温度下运行,并延长可加燃料或可重复使用的航天器的使用寿命。新的腔室材料由铼基体组成,表面涂有铱以防氧化。这种材料将推进器的工作温度提高到 2200°C,比目前使用的硅化物涂层铌腔室的 1400°C 有显著提高。用铱涂层铼制造的 22 N 级空间保持发动机的稳态比冲比铌腔室高 20 到 25 秒。预计 Ir-Re 远地点 440 N 级发动机将额外提供 10 到 15 秒。这些改进的性能是通过减少或消除燃烧室内的燃油膜冷却要求,同时以与传统发动机相同的总混合比运行而实现的。该项目试图将飞行资格要求纳入其中,以降低飞行资格项目的潜在风险和成本。
随后,FEM 结果被用作静态和疲劳检查应力分析的一部分。FEM 和应力计算是推力反向器认证和适航过程的重要组成部分。有限元建模使用 MSC PATRAN 进行 FEM 的初始构建、负载应用和结果的后处理分析。推力反向器主要以 2D 壳元素(CQUAD 和 CTRIA)和 1D 梁元素(CBEAM 和 CBAR)建模。实体元素(CHEXA)用于在需要更高精度结果的关键区域创建细网格。
摘要 . 磁等离子体动力 (MPD) 推进器能够使用兆瓦 (MW) 的电力将准中性等离子体加速到高排气速度。这些特性使得此类设备值得考虑用于要求苛刻的长期任务,例如人类对火星或更远距离的探索。由于 MPD 推进器是正在进行的实验研究课题,而不是已开发的推进器,因此在系统和任务级别对其进行评估通常很困难。但是,为了评估 MPD 推进器在后续任务中的效用,需要对性能进行一些充分的表征,或者更确切地说,需要对性能进行预测,并定义系统级别以供分析使用。已经对自场 MPD 推进器的最新物理模型进行了检查、评估和重新配置,以供系统和任务分析师使用。物理模型允许根据可在实验室中测量的物理参数合理预测推进器性能。本文介绍了这些模型及其对未来 MPD 推进器设计的影响。
nasa.gov › 中心 › dryden › pdf PDF 1990 年 4 月 15 日 — 1990 年 4 月 15 日由三重冗余数字飞行提供的心理状态 ...气体发生器的详细开发可通过重复此过程来使用
对航天器的电推进功率分别提供了AV和/或有效载荷能力的巨大增益,因此,这种推进的不同类型的推进能力,因此所施加的磁性磁性推进器(AF-MPD)似乎是最适合10至100 kW之间的电力范围。由于缺乏S/C的任务和权力,在过去的20年中,对此类推进器的调查几乎完全被停职。事实是,这些发动机也不能在实验室中代表性地操作,因为即使在非常低的真空吸尘器下,也需要与羽流的未知环境相互作用(排除在外)。需要进行空间实验,以提供尤其是I和效率的证明。与ISS一起使用,现在可以使用技术平台来恢复这项研究。因此,建议进行技术实验,以研究AF-MPD推进器的技术限制。将推进器安装在半自治的平台上,并且通过广泛的诊断软件包监视了操作和最终与S/C的相互作用。
本报告中将“常规螺旋桨布置”这一术语应用于商用船舶船尾的螺旋桨安装。由于系统冗余的要求,DP 船舶使用双螺旋桨安装。大多数船形 DP 船舶(钻井船等)均采用这种布置。原动机(大多数应用中为电动机)通过减速齿轮和推进轴驱动螺旋桨。轴由船体内部的一个或多个轴承支撑。轴穿过船体由艉轴管组件完成,该组件包括两个轴承(油或水润滑)和一个轴密封。这种布置简单可靠。螺旋桨设计用于最大速度要求;DP 服务期间仅需要部分功率。船尾的空间允许安装直径相对较大的螺旋桨,该螺旋桨在系柱牵引(零流入速度)和低流速 DP 操作期间产生高比推力。