D. Fox,S。Thrun,F。Dellaert和W. Burgard,《移动机器人定位的粒子过滤器》,在A. Doucet,N。DeFreitas和N. Gordon的A. Doucet,编辑中,实践中的顺序蒙特卡洛方法。Springer Verlag,纽约,2000年。
在过去十年中,获取知识的方式发生了根本性变化。这一过程始于 2011 年左右,当时斯坦福大学教授 Andrew Ng、Sebastian Thrun 等人通过在线课程向所有人提供他们的 AI 课程(Ng & Widom,2014)。这种类型的课程通常被称为大规模开放在线课程 (MOOC)。流行的 MOOC 平台包括 Coursera、Udacity、edX、Udemy 等。直到 2011 年,AI 通常只能在有限数量的大学课程或书籍或论文中学习。此外,这些资源主要在发达国家提供。因此,新兴市场的潜在学习者无法轻松访问相应的资源。由于 MOOC,所谓的“人工智能知识民主化”已经开始从根本上改变我们的学习方式,并催生了新的人工智能超级大国,例如中国(Lee,2018)。
•自动移动机器人简介。Roland Siegwart和Illah R. Nourbakhsh,麻省理工学院出版社,2004年。•Howie Choset,Kevin Lynch,Seth Hutchinson,George Kantor Wolfram Burgard,Lydia Kavraki和Sebastian Thrun的机器人运动原理,理论算法和实施原理。b。参考书:•机器人运动计划,Jean-Claude Latombe,Kluwer学术出版商,1991年。•概率机器人塞巴斯蒂安·特伦(Sebastian Thrun)。•计划算法,史蒂文(Steven),M,拉瓦勒(Lavalle)。•机器人运动计划Jean Claude Latombe。•移动机器人技术的计算原理,Gregory Dudek和Michael Jenkin。•讲师也可以使用讲义和研究文章。c。目的:本课程侧重于运动计划,感知和推理的概念,这是移动自动驾驶汽车在跨越土地,海洋和空气的动态,非结构化的环境中智能操作所需的。在本课程中,学生将学习如何在非结构化环境中计划机器人的运动,并使用概率方法,这将使他们在不确定性的情况下自我定位并理解周围环境。这些方法将在模拟平台上实现,以关闭透明度循环,以在复杂领域的稳健交付,这些循环在复杂的字段中进行了强大的交付,这些循环通常不是为了容纳机器人而设计的。还将讨论智能机器人系统的案例研究。d。课程结果:完成该模块后,学生将能够:•了解各种运动计划算法并在各种环境中实施。•了解使用统计建模技术(例如高斯过程)的使用,以允许机器人解释传感器数据并理解其周围环境。•了解概率方法如何解决由于现实世界中非确定性而固有的不确定性。•能够适应并应用机器人概念来设计和开发针对不同应用领域的实用机器人解决方案。•了解如何使用Python语言和机器人中间件(例如ROS)在简单的移动机器人上实现概率方法。
在过去十年中,获取知识的途径发生了根本性的变化。这一过程始于 2011 年左右,当时斯坦福大学教授 Andrew Ng、Sebastian Thrun 等人通过在线课程向所有人提供他们的 AI 课程(Ng & Widom,2014)。这种类型的课程通常被称为大规模开放在线课程(MOOC)。流行的 MOOC 平台包括 Coursera、Udacity、edX、Udemy 等。直到 2011 年,人工智能通常只能在有限数量的大学课程或书籍或论文中学习。此外,这些资源主要在发达国家获得。因此,新兴市场的潜在学习者无法轻松获取相应的资源。由于 MOOC,所谓的“人工智能知识民主化”已经开始从根本上改变我们的学习方式,并催生了新的人工智能超级大国,例如中国(Lee,2018)。
高级驾驶辅助系统 (ADAS) 从舒适性增强发展到安全应用。随着对更高感知传感器数据质量的需求不断增长,基于激光的传感器往往主导许多实验性智能车辆系统,应用范围从行人保护(参见 Walchsh¨ausl 等人,2006 年)到完全自动驾驶(参见 Darms 等人,2009 年)。新的、有前途的信号处理方法,例如从机器人技术中采用的基于占用网格的方法(参见 Thrun 等人,2005 年),在很大程度上依赖于激光雷达传感器,并为高度自动化的驾驶辅助铺平了道路。与毫米波雷达相比,激光雷达 (lidar) 系统在方位角平面上提供更高的角度分辨率,能够分离相距小于 1 度的目标。这是许多 ADAS 应用的关键特性,因为高角度分辨率对于确定物体的宽度和形状至关重要。这些信息为对象分类算法和跟踪系统提供了宝贵的输入,可以精确确定
13 Thrun等人。,斯坦利:机器人Darpp Grand Chalenge,《根杂志》,飞行。23,2016,pp。6613692。14 Valexin,萨维拉(Savera)的所有C9EES都挑战了Darpatops,Cits。15 Waymo Hisry,https:// ways/bout/bout/#stomy。16 Composel,自动驾驶和刑法。国际和集体责任,p。 17。17个Ragons,自动引导自动:谁在开发方面更先进? , in the sports Gazza , May 16, 2021, gtps://wwwwwwwwwwwwwwwwwwwwwwwww.its/spair/16-05-05-021/自动式kid-chrage-christ件件件件件式式式式式ply-pop-ply-ply-ply-ply-ply-10828282828282828282828282828282828338383833333333333。 18十字架,rootaxi:Waymo从加利福尼亚的道路上获得扩展许可证,体育Gazza,2024年3月6日, https://www.gate.it/stream/lave-auto-Pream/03-03-2024/roo-boxy-druo-bacti-dop-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-i n-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-drops. california.shtme?refresh_ce。 19 Ragons,Autumn Guiding Autage:谁对开发更为先进? ,cit。 20离开,自我正确:下一个弯曲曲线的危险? 智能移动性的保险,道德和陪审团,p。 8。17个Ragons,自动引导自动:谁在开发方面更先进?, in the sports Gazza , May 16, 2021, gtps://wwwwwwwwwwwwwwwwwwwwwwwww.its/spair/16-05-05-021/自动式kid-chrage-christ件件件件件式式式式式ply-pop-ply-ply-ply-ply-ply-10828282828282828282828282828282828338383833333333333。18十字架,rootaxi:Waymo从加利福尼亚的道路上获得扩展许可证,体育Gazza,2024年3月6日, https://www.gate.it/stream/lave-auto-Pream/03-03-2024/roo-boxy-druo-bacti-dop-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-i n-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-drops. california.shtme?refresh_ce。19 Ragons,Autumn Guiding Autage:谁对开发更为先进?,cit。20离开,自我正确:下一个弯曲曲线的危险?智能移动性的保险,道德和陪审团,p。 8。
人工智能 (AI) 有着数十年的悠久传统。1956 年,麦卡锡在达特茅斯会议上首次提出了“人工智能”这个名称,从此开启了这一研究领域的热潮,并一直延续至今 (McCarthy et al., 2006)。人工智能最初的重点是符号模型和推理,随后出现了第一波神经网络 (NN) 和专家系统 (ES) 的浪潮 (Rosenblatt, 1957; Newel and Simon, 1976; Crevier, 1993)。当明斯基和帕普特 (Minsky and Papert, 1969) 证明感知器在学习非线性可分函数(例如异或 (XOR))时存在问题时,该领域遭受了严重挫折。这极大地影响了人工智能在随后几年的发展,尤其是在神经网络领域。然而,在 20 世纪 80 年代,神经网络通过反向传播算法的发明而卷土重来(Rumelhart 等人,1986 年)。后来在 20 世纪 90 年代,关于智能代理的研究引起了广泛的兴趣(Wooldridge 和 Jennings,1995 年),例如探索感知和行为的耦合效应(Wolpert 和 Kawato,1998 年;Emmert-Streib,2003 年)。最后,在 21 世纪初,大数据的出现,导致了神经网络以深度神经网络 (DNN) 的形式再次复兴(Hochreiter 和 Schmidhuber,1997 年;Hinton 等人,2006 年;O'Leary,2013 年;LeCun 等人,2015 年)。这些年来,人工智能在机器人、语音识别、面部识别、医疗保健和金融等许多领域取得了巨大成功(Bahrammirzaee,2010;Brooks,1991;Krizhevsky 等人,2012;Hochreiter 和 Schmidhuber,1997;Thrun,2002;Yu 等人,2018)。重要的是,这些问题并不都属于一个领域,例如计算机科学,而是涉及心理学、神经科学、经济学和医学等多个学科。鉴于人工智能应用的广泛性和所用方法的多样性,毫不奇怪,看似
Google无人驾驶汽车是一款自动驾驶的汽车,可以安全,合法和舒适地在道路上航行。它结合使用Google地图,硬件传感器和人工智能软件来控制其运动。该项目由塞巴斯蒂安·瑟伦(Sebastian Thrun)领导,他还共同发明了Google Street View,并赢得了2005年DARPA大挑战赛。汽车将Google地图与各种硬件传感器集成在一起,包括LiDAR,摄像机,距离传感器和位置估算器。LIDAR技术使汽车可以测量最多60米的距离,而摄像机检测到即将到来的交通信号灯。距离传感器使汽车能够“查看”附近或即将到来的汽车或障碍物。位置估计器确定车辆的位置并跟踪其运动。人工智能软件从Google地图和硬件传感器接收数据,确定何时加速,放慢,停止或引导轮子。AI经纪人的目标是安全和合法地将乘客运送到所需的目的地。截至2012年,内华达州已经对Google无人驾驶汽车进行了测试,六辆汽车乘以140,000英里,偶尔进行人工干预。这项技术有可能彻底改变全球运输系统。回顾我在2014-2015学年在浦那大学的工程旅程,在AISSMS-SCOE的Gaikwad和Head Computer Engineering系的指导下,这是令人难以置信的启发性。我最真诚的感激之情延伸到A.M. Jagtap教授,他不仅提供了宝贵的指导,而且在整个学术期限内都为我提供了支持。自动驾驶汽车将控制驾驶,使用传感器来检测障碍物并相应地调整速度。这需要多种技术,包括车道检测,障碍物检测,自适应巡航控制,避免碰撞和横向控制。此外,传感器将监视道路状况,调整速度以确保安全行驶。完全自动化汽车是一项复杂的任务,但是在单个系统中取得了进步。配备了雷达,激光镜头和摄像机的Google的机器人汽车可以快速,准确地处理信息,从而做出决策并比人类更好地实施它们。这项技术有可能减少与交通相关的伤害和死亡,同时优化能源使用和道路空间。该系统结合了来自包括Google Street View在内的各种来源的数据,以创建完全自主的驾驶体验。过道Coe,浦那。车辆的转向和制动系统由通用处理器直接控制。该系统从各种来源接收感官输入,包括LiDar,Radar,位置估计器和Street View图像。LIDAR创建了一个三维平台,用于映射障碍物和地形。相机视觉馈电用于检测交通信号的颜色,使车辆能够相应地移动。同时,处理器不断与发动机控制单元进行通信。发动机控制单元具有硬件传感器,包括雷达,它使用无线电波来检测对象并确定其范围,高度,方向或速度。视觉选择会影响角分辨率和检测范围。雷达技术具有多种应用,例如空中交通管制,天气监测和军事系统。高科技雷达系统能够从高水平的噪声中提取物体。雷达系统以预定的方向传输无线电波,然后将其反映和/或被对象散射。反射回发射器的信号使雷达成为可能。如果一个物体移动更近或远,则由于多普勒效应,无线电波的频率发生了略有变化。雷达接收器通常位于发射器附近,电子放大器加强了接收天线捕获的弱信号。还采用复杂的信号处理方法来恢复有用的雷达信号。雷达系统在长范围内检测物体的能力是由于它们通过的介质对无线电波的吸收较弱。雷达系统依赖于他们自己的传输,而不是自然光或对象发射的波,通常是为了避免检测到某些对象,除非需要进行预期的检测。雷达技术使用人工无线电波照亮物体,尽管在数字信号处理和噪声水平提取方面具有高科技功能,但该过程使人眼或相机看不见。相反,LiDAR(光检测和范围)系统利用从激光器来测量目标的距离和特性的光脉冲,其应用涵盖了各个领域,例如地质和遥感。孔镜或梁分离器用于收集返回信号。1。与雷达不同,Lidar不使用微波或无线电波,从而与传统的雷达技术不同。它在大气研究,气象学甚至月球着陆任务中的使用都证明了其在不同地区的潜力。雷达和激光雷达系统之间的选择取决于特定要求,例如要检测到的对象的类型,环境条件和技术能力。与较短的红外激光器不同,机载的地形图映射激光雷达通常使用1064 nm二极管泵式YAG激光器,而测深的系统则使用532 nm的频率加倍激光器,因为后者能够以较少的衰减渗透水穿透水。图像开发的速度也受到系统中的扫描速率的影响,可以通过各种选项(例如双振荡平面镜或与多边形镜的组合)实现。固态照片探测器(例如硅雪崩光电二极管)和激光射击中的光电构皮之间的选择至关重要,接收器的敏感性是在激光雷达设计中需要平衡的另一个参数。非扫描系统(例如“ 3D门控观看激光雷达”)应用脉冲激光器和快速门控相机进行3D成像。在移动平台(例如飞机或卫星)中,需要仪器,包括全球定位系统接收器和惯性测量单元(IMU),以确定传感器的绝对位置和方向。这允许使用扫描和非扫描系统进行3D成像。每个卫星都会传输包括精确的轨道信息,一般系统健康以及所有卫星的粗糙轨道的消息。2。全球定位系统(GPS)在所有天气条件下都提供位置和时间信息,从地球上方的GPS卫星发送的准确的时序信号来计算其位置。接收器使用这些消息来确定运输时间,计算到每个卫星的距离,并使用三尾征来计算接收器的位置。然后以派生信息(例如根据位置变化计算出的方向和速度)显示此位置。在此处给出的文字Google Street View使用各种技术来捕捉全球街道的全景。专门的GPS应用程序同时使用位置和时间数据,包括用于交通信号的时机以及手机基站的同步。位置传感器(例如旋转器编码器)用于工业控制,机器人技术和其他需要精确轴旋转的应用。该系统由15个摄像头的玫瑰花结成,带有5百万像素CMOS图像传感器和自定义镜头。新一代的相机可以改善分辨率,取代了早期的相机。Google Street View显示了特殊改装的汽车的图像,但还使用替代方法来用于无法通过汽车(例如Google Trikes或Snowmobiles)进入的区域。这些车辆具有定向相机,GPS单元,激光范围扫描仪和3G/GSM/Wi-Fi天线。高质量的图像现在基于开源硬件摄像头。街道视图图像在放大地图和卫星图像后出现,可以通过将“佩格曼”图标拖到地图上的位置来访问。在交叉和交叉点处,显示了其他箭头。3。4。通过照片中的固体或损坏的线可视化相机汽车的路径,箭头指向每个方向的后续图像。人工智能软件过道COE,Pune使用控制单元。人工智能是旨在创建智能机器的计算机科学领域。智能代理人感知其环境并采取行动以最大程度地提高成功。Xeon处理器是一个多核处理器,最多8个执行核,每个核心支持两个线程。每个核心的共享指令和数据中级缓存处理实时传感器值和一般处理。两个Cortex-A9处理器处理转向和制动系统。异质计算是指使用各种计算单元(例如通用处理器或自定义加速逻辑)的电子系统。传感器数据获取:人类的感知经历了程序的运行,传感器数据采集涉及从各种传感器中收集和处理环境数据,包括LIDARS,CAMERAS和GPS/INS。JAUS互操作通信:无人系统的联合体系结构是由美国国防部开发的,为无人系统创建开放的建筑,Labview在其开发中起着至关重要的作用。驱车系统过热COE,浦那19 25。使用机电执行器和人机界面用电子系统替换传统的机械控制系统,从而消除了诸如转向柱和泵等组件。5。早期的副驾驶系统将演变成汽车运动员。算法:一种算法用于接收和解释从领导者车辆的位置数据,模仿其导航属性以准确遵循设定路径,并利用诸如面包屑位置和立方样条拟合的技术。逐线技术6.乘线技术驱动驱动线将技术与人工智能和算法相结合,仅控制三个驾驶零件:转向,制动和油门,取代传统的机械系统。通过电线技术进行电子驱动器及其应用的电子驱动技术涉及从车辆控制系统中消除传统的机械组件,并用电子传感器,计算机和执行器代替它们。DBW的优点包括通过计算机控制的干预来提高安全性,例如电子稳定控制(ESC),自适应巡航控制和车道辅助系统。此外,DBW提供的设计灵活性扩大了车辆定制选项的数量。但是,由于更高的复杂性,开发成本和安全性所需的冗余要素,实施DBW系统的成本可能会更高。另一个缺点是,制造商可能会降低某些范围内的油门灵敏度,以使车辆更容易或更安全。电子动力转向(EPS)是通过电线技术对驱动器进行的常见应用,该技术使用具有可变功率辅助的电子驱动转向系统。EPS系统在较低的速度下提供更多的帮助,而在较高速度下的援助则比液压系统更节能。电子控制单元(ECU)根据方向盘扭矩,位置和车辆速度等因素来计算所需的辅助功率。有四种形式的EPS:列辅助类型,小齿轮辅助类型,直接驱动类型和机架辅助类型。这些系统具有独特的优势,例如低惯性和摩擦,对各种汽车模型的适应性以及补偿单方面力量的能力。总体而言,电线技术的电子驱动器在车辆控制系统中提供了提高的安全性,灵活性和能源效率,这使其成为制造商的流行选择。在无人驾驶汽车中,使用算法和馈送到ECU的数据计算转向角度和扭矩,从而可以免提操作。6.3电线技术制动器用电子传感器和执行器代替了传统的机械制动系统,从而提供了减轻体重,较低的操作噪声和更快的反应时间等好处。但是,冗余制动系统对于安全性至关重要,在主要系统故障的情况下激活。电线技术的制动器使用雷达和激光镜输入来计算制动踏板传感器,从而使驾驶员无法施加制动器。使用电线技术的6.4节气门用电子控制代替了加速器踏板和油门之间的机械连接,并使用诸如加速器踏板位置,发动机速度和车辆速度等传感器来确定所需的油门位置。此设置提高了无缝的功率训练一致性,并促进了诸如巡航控制,牵引力控制和防止系统等功能的集成。运输官员的头等重点是流畅的流量。减少排放,燃油消耗减少,COE,Pune驾驶,带踏板位置无关,等等,辅助,空气燃料混合控制,减少排气排放。还与汽油直接注射技术,Aissms COE,Pune一起使用,许多地区正在开发许多区域,以允许人们使用它们,尤其是出租车服务,驾驶员由于各种原因而需要这份工作。当自动驾驶汽车能够执行没有额外的人的任务时,涉及人类服务的工作就会开始减少。这种现象类似于由自动驾驶汽车引起的大规模工作,这些汽车可以更有效地执行任务。自动驾驶汽车有可能彻底改变交通流量,而人类驾驶员可以选择破坏交通法律。随着自动驾驶汽车变得越来越普遍,交通拥堵将大大减少,从而使合并并退出高速公路。流量的减少将导致经济改善和平均燃油经济性的改善,以及由于其他车辆的一致性而导致的燃料消耗降低。3)燃油经济性自动驾驶汽车将消除不必要的加速和制动,以最佳的性能水平运行,以达到最佳的燃油效率。即使提高了1%的燃油效率,仅在美国就可以节省数十亿美元。通过实施自主安全系统,可以实现卓越的燃油效率。4)时间成本每天的价值在增加,自动化汽车可以为居住在繁忙城市的个人节省大量的时间。即使没有考虑货币价值,还有更多的时间进行休闲活动也会提高生活标准。降低由于流量而浪费的时间将使人们能够准时,更具动态并提高工作效率。期货距离自动驾驶汽车的过渡带来了一些好处,包括减少交通拥堵,提高燃油经济性和提高生产率。但是,它还引起了人们对设备成本,复杂的人工智能软件以及非理想道路条件对系统性能的潜在影响的担忧。demerits:1)高设备成本:使用高级技术,例如雷达,激光雷达,位置传感器,GPS模块,多核异质处理器和高分辨率摄像头很昂贵。2)复杂的AI软件:用于机器人汽车的人工智能软件的设计和实施是复杂的任务。3)多样化的道路条件:非理想的道路条件可能会影响软件做出的决策,从而可能影响系统性能。4)专业驾驶员结构的失业将大大减少许多与交通相关的问题。自动驾驶汽车可以更有效地利用道路,从而节省空间和时间。狭窄的车道将不再是一个问题,大多数交通问题将通过这项新技术的帮助最小化。研究表明,使用自动驾驶汽车,交通模式将变得更加可预测,而且问题越来越小。汽车制造商已经在高端型号中纳入了驱动程序辅助系统,这一趋势预计将继续。为了实现这一目标,需要进行广泛的研究和测试。随着智能车辆变得越来越普遍,公共部门的积极主动方法将决定何时到达这些福利。目前,存在各种技术来帮助自动驾驶汽车开发,例如GPS,自动巡航控制和巷道保持援助。这些技术可以与其他其他技术结合使用,例如基于视频的车道分析,转向和制动驱动系统以及编程控件,以创建一个完全自主的系统。主要挑战是获得公众信任,以允许计算机驾驶车辆。不会立即接受该产品,但是随着系统变得更加普遍,揭示其收益,随着时间的流逝,该产品会随着时间的流逝而获得接受。实施自动驾驶汽车将引起人们对可以执行任务的计算机代替人类的担忧。但是,社会不会立即改变;取而代之的是,随着这些车辆融入日常生活,随着时间的流逝,它将变得更加明显。2010年第11届国际控制,自动化,机器人技术和愿景国际会议(ICARCV)提出了一份名为“智能车辆导航方案”的研究论文。会议诉讼位于当年出版物的第1809-1814页。此外,2013年Kollam的T.K.M理工学院的研讨会报告探索了自动驾驶汽车的概念。A. Frome的一篇论文,“ Google Street View中的大规模隐私保护”,在2009年的第12届IEEE国际计算机视觉会议(ICCV 09)上发表了。该报告与来自浦那的Aissms Coe的研究人员合着。此外,罗尔夫·伊斯曼(Rolf Isermann)在2011年发表了《国际工程研究技术杂志》(IJERT)的第22卷。Google Street View开发的关键人物 Sebastian Thrun也是将Google的街头图像与人工智能软件相结合的先驱,以创建创新的导航系统。 他的工作为他赢得了美国国防部的重大认可和大量赠款。Sebastian Thrun也是将Google的街头图像与人工智能软件相结合的先驱,以创建创新的导航系统。他的工作为他赢得了美国国防部的重大认可和大量赠款。