太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。
摘要 - 非乳腺癌皮肤癌(NMSC)是起源于皮肤顶层的最普遍的癌症形式之一,其中Basalcellcarcinoma(BCC)和Squamouscellcarcinoma(SCC)是其主要类别。尽管两种类型都可以进行高度治疗,但治疗的成功取决于早期诊断。早期NMSC检测可以通过临床检查来实现,通常涉及视觉检查。一种替代方法,尽管是侵入性的方法是一种皮肤活检。微波成像已获得非侵入性早期检测到各种癌症的突出性,利用健康和恶性组织的不同介电特性来区分肿瘤并将其归类为良性或恶性。最近的研究表明,通过在低THz范围(0.1至10 THz)中对齐电磁波频率与生物分子的谐振频率(例如蛋白质)在低THz范围(0.1至10 THz)中对齐生物标志物的潜力来检测生物标志物。本研究提出了一种创新的微观生物传感器,旨在
我们提出了在绝缘子底物上硅上制造的微型机械Terahertz(THZ)检测器,并在室温下运行。该设备基于微米尺寸的U形悬臂,其中两个铝制半波偶极天线被沉积。这会在2 - 3:5 THZ频率范围内延伸的吸收。由于硅和铝的不同热膨胀系数,吸收的辐射会诱导悬臂的变形,悬臂的变形是使用1.5 L M Laser二极管光学地读出的。通过用振幅调制2.5 THz量子级联激光器照明检测器,我们在室温和大气压下获得1:5 10 8 pm W 1的响应性,用于悬臂的基本机械弯曲模式。这产生了20 nw = unigrounforkHz p 2.5 thz的噪声当量功率。最后,该模式的低机械质量因子对大约150 kHz带宽的广泛频率响应,热响应时间为2.5 l s。
太赫兹辐射介于红外和微波之间,最常见的频率范围是 0.1 THz 至 10 THz [1]。由于缺乏有效的、在室温下工作的、紧凑的、成本高效的光源和探测器,太赫兹是整个电磁辐射谱中研究最少的范围之一,直到 20 世纪 80 年代才开始被探索。自过去几十年以来,太赫兹辐射谱引起了研究人员的注意。该辐射范围的具体特征包括非电离、非侵入性、在水中的高吸收率和弥散性(水是生物组织的主要成分)。除了国防应用 [2、3] 和危险物质检测 [4-6] 之外,太赫兹辐射对医学诊断也非常有用 [7]。亚毫米波长最重要的特性是尚未发现其对人体组织有任何负面影响 [8-11]。在医学应用中,这种类型的辐射可用于检测乳腺癌和皮肤癌 [ 12 - 16 ]、研究引入血液循环的标记物,甚至用于分析人眼的角膜 [ 17 , 18 ]。在开发可在大量患者身上测试的设备时,太赫兹辐射的无创性非常重要,它比基于电离辐射的传统方法更具成本效益,诊断也更安全。水分子会强烈衰减太赫兹辐射,因此所研究的生物样本必须很薄或放在由水组成的材料表面。透射配置是可能的,但是它需要准备类似于组织病理学的生物样本,这在活体患者中是不可接受的。因此,反射配置是必要的,我们的研究重点将放在皮肤组织上。这项工作的主要目的是将先进的衍射光学元件 (DOE) 应用于太赫兹发射器和检测器装置。对比健康和癌变皮肤的光学特性可以区分危及生命的病变。由于太赫兹扫描的分辨率有限(波长相对较长),医生的检查无法替代,但这种设备在预防护理中非常有用。我们的目标是设计和制造薄型 DOE,这将使太赫兹皮肤扫描仪更加紧凑和实用。我们提出了一种基于利用的新颖方法,该方法是该领域的新方法
摘要 随着对大带宽的需求呈指数级增长,考虑最佳网络平台以及通信网络中信息的安全性和隐私性非常重要。高载波频率的毫米波和太赫兹被提议作为通过提供超宽带信号来克服现有通信系统香农信道容量限制的使能技术。毫米波和太赫兹还能够建立与光通信系统兼容的无线链路。然而,大多数能够在这些频率范围(100 GHz-10 THz)下合理高效运行的固态元件,尤其是源和探测器,都需要低温冷却,这是大多数量子系统的要求。本文展示了当源和探测器在低至 T = 4 K 的低温下运行时,可以实现安全的毫米波和 THz 量子密钥分发 (QKD)。我们比较了单输入单输出和多输入多输出 (MIMO) 连续变量 THz 量子密钥分发 (CVQKD) 方案,并找到了 f = 100 GHz 和 1 THz 之间的频率范围内的正密钥速率。此外,我们发现最大传输距离可以延长,密钥速率可以在较低温度下提高,并且通过使用 1024 × 1024 根天线,在 f = 100 GHz 和 T = 4 K 时实现超过 5 公里的最大秘密通信距离。我们的结果首次展示了毫米波和太赫兹 MIMO CVQKD 在系统运行温度低于 T = 50 K 下的可能性,这可能有助于开发下一代安全无线通信系统和量子互联网,用于从卫星间和深空到室内和短距离通信的应用。
图2。(a)使用THZ-SNOM设备测量的散射THZ信号的空间映射;图像16×16μm2。丝带的宽度为𝑤= 3.4 µm,它们被空间隙隔开0.5μm;阵列的周期为𝐿= 3.9 µm;石墨烯填充分数为87%。(b)石墨烯丝带研究阵列的AFM高度轮廓(5×5 µm的高分辨率图像!);明确观察到由于SIC露台步骤而引起的高度变化。(c)同一区域的高分辨率Thz-snom图像。在此视图中,我们还区分石墨烯丝带中的SIC Terrace步骤。(d)对AFM记录的样品高度与在扫描过程中沿面板中指示的绿色水平线扫描期间获得的样品高度之间的比较(b,c)。对于散射的THz信号,减去背景(直线);减去背景的水平为〜9,(d)中绘制的Thz信号幅度表示使用相同的比例相对于此值的变化。
组织委员会邀请您参加国际计算,物联网和微波系统的国际会议(ICCIMS '24)。会议由加拿大皇家军事学院(RMC)和Outaouais的魁北克大学(UQO)共同组织,将于2024年7月29日至31日在UQO举行。ICCIMS'24旨在创建一个最佳平台,以促进讨论,共享经验并促进专门从事计算的各种知名研究小组之间的协作,Microwave,Millimeter-Wave(MMWAVE),Terahertz(Terahertz(THZ)(THZ)(THZ)通信和互联网(IOT)。此外,该会议将为新兴的研究人员提供出色的出版旅程并有效地传播其宝贵的研究贡献。我们诚挚地邀请所有作者积极参与,并通过其演讲,创新的研究结果和技术进步做出贡献。您的参与将大大提高ICCIMS'24
摘要 —新太空时代的到来增加了太空通信流量,公共太空机构和私人公司牵头开展了新的太空任务。在不久的将来,火星殖民也是载人任务的目标。由于地球和火星附近的太空流量增加,带宽变得拥挤不堪。此外,当前任务的下行链路性能在延迟和数据速率方面并不令人满意。因此,为了满足日益增长的空间链路需求,本研究提出了太赫兹波段(0.1-10 THz)无线通信。与此相符,我们讨论了实现 THz 波段空间链路所带来的主要挑战以及可能的解决方案。此外,我们模拟了火星大气晴朗和沙尘暴严重的火星-空间 THz 链路,以表明即使在最恶劣的条件下,火星通信流量也可以获得较大的带宽。
摘要 - 新空间时代通过由公共空间代理商和私人公司领导的新空间任务增加了太空中的交流trafϔic。火星殖民化也是船员任务在不久的将来的目标。由于地球和火星附近的空间越来越多,带宽变得拥挤。此外,目前任务的下行链路性能在延迟和数据速率方面并不令人满意。因此,为了满足太空链接的不断增长的需求,在本研究中提出了Terahertz频段(0.1-10 THZ)无线通信。与此相一致,我们讨论了THZ带空间链接姿势和可能的解决方案的主要挑战。此外,我们为火星大气层的情况模拟了火星空间THZ链接,并进行了严重的沙尘暴,以表明即使在最坏的条件下,也可以使用大型带宽用于火星交流。
研究活动的描述: - TMD中的准2D超导性的研究以及在超导导体的集体模式的NBSE2和NBS2的薄层中观察到的自旋轨道耦合和单旋转旋转旋转的效果。-Calculation of Raman response functions and THz optical conductivity of thin layers of TMDs in the presence of a current flow -Investigation of strong and ultra-strong coupling of collective modes of a quasi-2D superconductor to THz metamaterials, assessing the possibility of a "Higgs polariton" condensate and other exotic phases.