本报告探讨了欧洲电力部门减少排放的当前情况和机会。它描述了欧盟减少排放量的政治框架,以及确定电力部门排放速度的关键驱动因素。这些驱动因素是在三个案例研究的背景下提出的,其他国家可能会经验教训。它还评估了一套最近发表的方案,从与巴黎协议的兼容性角度来看,电力部门(几乎)完全脱碳。在此基础上,我们列出了由于过渡到完全脱碳的电力部门而产生的许多政策影响和共同利益,并提供了许多经验教训,这些经验教训可以被其他能源过渡的国家使用。
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
作为重要的金属氧化物,由于其在催化和光催化中具有许多有希望的特性,因此对二氧化钛二氧化钛进行了广泛研究。解剖酶TiO 2晶体的特性在很大程度上取决于暴露的外表面。已经做出了许多努力,以提高养殖化合物2的{001}方面的高反应方面的百分比,以增强其催化特性。本评论报告了设计和制造高反应性方面的最新进展通过各种策略,包括传统的蒸汽相外延过程,水热/溶液热方法,非溶液性酗酒方法和高温气体相反应。此外,重点介绍(001)表面,综述还涵盖了解剖酶TiO 2晶体各种高反应性方面的理论模拟的进步。最后,我们提供了一个摘要和一些观点,以了解这一新兴领域的未来研究的挑战和新方向。
分子氧与半导体氧化物表面的相互作用在许多技术中起着关键作用。这个主题很难通过实验和理论来实现,这主要是由于多种施加电荷状态,吸附氧气的吸附构和反应通道。在这里,我们使用非接触原子力显微镜(AFM)和密度功能性the-Ory(DFT)的组合来解决金红石TIO 2(110)表面上的吸附O 2,这在金属氧化物的表面化学中提出了长期的挑战。我们表明,通过氧气量终止的化学惰性AFM尖端可以很好地解决吸附物种和底物的氧气sublattice。吸附的O 2分子可以从表面接受一个或两个电子极性,形成超氧或过氧物种。在与应用相关的任何条件下,过氧状态是最优选的。非侵入成像的可能性使我们能够解释与尖端注入电子/孔注入相关的行为,与紫外光的相互作用以及热退火的效果。
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。
这项工作描述了用溶胶 - 凝胶过程和控制结晶的高折射率和低散射的二氧化钛膜的精心设计。使用椭圆测量法,分光光度计,X射线衍射和电子显微镜,研究了融合二氧化硅对熔融二氧化硅上的溶胶 - 凝胶加工钛涂层的晶体结构的发展。它表明,可以分别以0.5%和1%的相关光损失为2.5和2.7折射率的解剖酶和金红石涂层,这对于集成光子学的应用是极好的妥协。这些演变与热诱导的传质和热退火期间发生的相变有关,这涉及首先涉及催化酶多向纳米晶体的成核生长和烧结,然后转化为金红石多偏的纳米晶体。同时,通过扩散的烧结来产生微米大小的金红石单晶和单方面的血小板斑点,带有(110)面的(110)面部与表面消耗周围的解剖酶和金红石纳米晶体的面孔,表现为2.73和1.2%的折射率。这些血小板的形成受表面能的控制,并导致光损耗的增加。
材料上的特性。15最近,多层材料在表面工程社区中引起了广泛的关注,复合电极的制造也广泛用于LM电极处理。这还涉及增强电极材料的表面和界面,例如,减少金属颗粒的大小,不合适的多孔或分层结构,并与各种纳米颗粒进行修改或功能化表面(例如,,金属,金属氧化物,碳材料和离子/电子导电聚合物)。16 - 19虽然一项重要的研究集中在界面模式cation在改善金属化lms的能量存储和电性能中的作用,但它在自我修复特性方面已被很大程度上忽略了。由于其出色的电绝缘层和高导热率,可以将金属氧化物连接到聚丙烯LMS的表面上,以通过蒸气沉积形成复合的绝缘培养基。该方法不仅在适度地增加了复合lms的相对介电常数,而且在显着增强了电容器核心的热有效性方面。20,21尽管热量的快速耗散是由于电容器的介电损失或自我修复而产生的,但据信复合LMS可以防止在自我控制点附近介电lm的层间粘附,从而在自我控制过程中发挥隔离功能。22,23
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
1材料与可持续发展实验室(M2D),大学Bouira,1000,阿尔及利亚,阿尔及利亚2号,贝加亚大学技术学院环境工程实验室,06000 Bejaia,Algeria 3实验室,Algeria 3实验室3材料和催化剂的物理学化学,bejia 000 000,BEJIA,BEJIA,BEJIA,BEJIA,bejia 000,物理化学分析(CRAPC),Bou-ismaïl42004,Tipaza,Algeria 5实验室材料,能源,水和环境的过程。Faculty of Science and Technology, University of Bouira, 10000 Bouira, Algeria 6 University of Rennes, National School of Rennes chemistry, CNRS, ISCR - UMR6226, 35000 Rennes, France 7 Laboratory E2lim (Eau Environnement Limoges), University of Limoges, 123 avenue Albert Thomas, 87060 Limoges, France 8 Center for Energy and Environmental Materials, Ho Chi Minh,越南700000,基本和应用科学研究所,900000,环境与化学工程学院,Duy Tan University,Duy Tan University,Da Nang,550000,越南10自然资源的管理和估值和质量保证。SNVST教师,大学,Bouira 10000,阿尔及利亚SNVST教师,大学,Bouira 10000,阿尔及利亚
咨询:如果您对本文档有任何疑问,请联系 openresearch@mmu.ac.uk 。请在电子空间中包含记录的 URL。如果您认为您或第三方的权利因本文档而受到侵犯,请参阅我们的删除政策(可从 https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines 获取)