环氧树脂广泛用于电路板层压板、结构复合材料、粘合剂和表面涂层 [1]。热固性聚合物的交联度更高。环氧树脂具有更好的机械、物理和摩擦学性能,因此被用于结构应用。环氧树脂具有高模量、抗疲劳、低蠕变,并且在高温下也能很好地工作 [2-4]。交联密度越高,断裂韧性、抗裂纹起始和生长的刚度越低,这反过来限制了环氧树脂在现代应用中的使用 [5]。在环氧树脂固化过程中,交联链中会产生应力,这会降低断裂韧性、降低抗裂纹起始能力以及由于塑性变形而限制空隙的增长 [6,7]。通过改变环氧树脂的组成并混合不同的纳米填料作为第二阶段,可以应对这些挑战,从而实现高级复合材料应用 [8,9]。环氧树脂与纳米填料的混合可提高断裂韧性、刚度和强度[10]。这些纳米填料包括无机纳米颗粒,如粘土[11]、Al2O3[12]、ZrO2[13,14]和TiO2[4]。加入无机纳米填料如碳纳米管[15]和SiO2[5]后,表现出良好的机械性能,有趣的是,环氧树脂的韧性增加了,而基本性能没有改变。基质形态的变化主要是由于纳米填料渗透到致密的环氧交联网络之间。在目前的研究中,我们尝试生产SiO2/环氧树脂纳米复合材料。选择超声波技术,通过改变纳米填料的浓度来改变填料的粒径。
副教授教授SERKAN BIYIK 个人信息 办公室电话:+90 462 377 8184 分机:8184 电子邮件:serkanbiyik@ktu.edu.tr 网址:https://avesis.ktu.edu.tr//serkanbiyik 国际研究人员 ID ScholarID:dAQmDl0AAAAJ ORCID:0000-0002-6083-0802 Publons / Web Of Science ResearcherID:AAX-2738-2020 ScopusID:56180494600 Yoksis Researcher ID:151246 教育信息 博士学位,Karadeniz 技术大学,科学研究所,机械工程,土耳其 2008 - 2015 研究生,Karadeniz 技术大学,科学研究所,冶金与材料工程,土耳其 2005 - 2008 本科,Karadeniz 技术大学,科学研究所,研究生,粉末冶金法生产含 TiO2 增强的 AgSnO2 基电接触材料及电弧侵蚀行为研究,黑海技术大学,科学、机械工程研究所,2015研究生,粉末冶金法生产银硼氧化物基接触材料及性能研究,黑海技术大学,科学、冶金与材料工程研究所,2008研究领域机械工程、建筑与制造、摩擦学、冶金与材料工程、材料科学与工程、复合材料、材料特性、生产冶金、粉末冶金、工程与技术学术头衔/任务副教授,黑海技术大学,阿卜杜拉坎卡职业学校,机械与金属技术,2020 - 继续助理教授,卡拉德尼兹技术大学、阿卜杜拉·坎卡职业学校、机械和金属技术、
摘要:细菌感染引起的疾病,尤其是耐药细菌引起的疾病威胁着全世界的人类健康。已经预测,早期诊断和治疗将有效降低由细菌感染引起的死亡率。因此,迫切需要开发有效的方法来早日检测细菌感染并尽快治疗它们。一些细菌可用于治疗细菌感染,例如大肠杆菌(大肠杆菌),金黄色葡萄球菌,铜绿假单胞菌,沙门氏菌spp,klebsiella spp,klebsiella肺炎幽门螺杆菌。使用纳米颗粒的纳米技术驱动的方法可以选择性地靶向并破坏细胞内的致病细菌,克服常规药物递送挑战。 纳米颗粒由于其独特的特性(例如高表面积与体积比率)以及用于靶向递送的功能化的能力而越来越有效地治疗细菌感染。 纳米颗粒,例如聚合物胶束,纳米注合体和金属纳米颗粒,可增强药物的生物利用度,稳定性和靶向,从而提高治疗有效性并最大程度地减少副作用。 关键词:细菌感染,药物输送,纳米颗粒,抗生素剂,药物靶向。使用纳米颗粒的纳米技术驱动的方法可以选择性地靶向并破坏细胞内的致病细菌,克服常规药物递送挑战。纳米颗粒由于其独特的特性(例如高表面积与体积比率)以及用于靶向递送的功能化的能力而越来越有效地治疗细菌感染。纳米颗粒,例如聚合物胶束,纳米注合体和金属纳米颗粒,可增强药物的生物利用度,稳定性和靶向,从而提高治疗有效性并最大程度地减少副作用。关键词:细菌感染,药物输送,纳米颗粒,抗生素剂,药物靶向。Even nanoparticles like Silver Nanoparticles (AgNPs), Gold Nanoparticles (AuNPs), Zinc Oxide Nanoparticles (ZnO NPs), Copper Nanoparticles (CuNPs), Iron Oxide Nanoparticles (Fe3O4 NPs), Chitosan Nanoparticles, Titanium Dioxide Nanoparticles (TiO2 NPs), Graphene Oxide纳米颗粒,二氧化硅纳米颗粒,聚合物纳米颗粒也对细菌感染的治疗也非常有用,因为它们可以封装抗生素或抗菌剂,以提供持续释放并靶向细菌感染(Xu等,2019)。
以化学能形式释放能量。9–16 该领域最新发展的一个例子是 Yangen 等人设计的 SRFB,它使用 I3/I 和 Br/Br3 作为氧化还原活性对。17 SRFB 由 WO3 装饰的 BiVO4 光阳极驱动,可提供 1.25% 的太阳能到输出能量转换效率。Yan 等人报道了一种由 Li2WO4/LiI 氧化还原对和染料敏化 TiO2 光电极组成的 SRFB,在放电密度为 0.075 mA cm2 时可实现 0.0195 mA h mL1 的电池容量。1 最近,Amirreza 等人构建了一个串联结构,其中有一个裸露的赤铁矿光阳极和两个串联的染料敏化太阳能电池; 2仅使用赤铁矿作为光阳极的AQDS(蒽醌-2,7-二磺酸盐)/碘化物SRFB从太阳能到化学能的转化效率约为0.1%。全钒氧化还原流电池,包括钒基SRFB,由于其高可逆性和快速的反应动力学,在世界范围内得到了广泛的研究和开发。3 – 6郝等人将氮掺杂的TiO 2光阳极应用于微流体全钒光电化学电池,平均光电流密度为0.1 mA cm 2。7Zi等人。展示了一种 AQDS/V 4+ SRFB,它使用负载在氟掺杂氧化锡 (FTO) 上的 TiO 2 纳米粒子作为光阳极,能够产生 0.14 mA cm 2 的相对稳定的光电流。8
摘要响应于对各种工业过程中对更有效传热技术的需求不断增长的需求,纳米流体的发展已成为一种有希望的解决方案。与固体相比,传统的传热液(例如矿物油,乙二醇和水)的热导电性相对较低,从而限制了热交换器的紧凑性和效率。纳米流体是通过在碱流体中悬浮超铁金属或非金属固体粉末而产生的,由于固体材料的较高导电性,其热性能增强。本文回顾了纳米流体的制备,导热率测量和影响因子,重点是导热率,作为改善热传递的主要驱动力。纳米流体的制备涉及一步或两步方法,而两步方法更常用于氧化物纳米颗粒(NPS),例如Al2O3,ZnO,MGO,MGO,TIO2和SIO2。该研究讨论了超声处理和磁力搅动等稳定技术,以确保纳米流体的均匀悬架和长期稳定性。使用短热线(SHW)和瞬态热线(THW)技术进行热导率测量,并考虑了非稳态的性质和潜在的误差源。这项研究强调了严格的实验设计和准确的数据分析的重要性,以解决热导率测量的复杂性和可变性,最终有助于纳米流体技术在有效传热溶液中的发展。关键字:纳米流体,热有限,纳米颗粒,纳米流体的稳定性1。引言不断增长的热流和快速收缩,导致选择了越来越多的有效传热技术。矿物油,乙二醇和水是许多工业过程中不断需要的传热液的例子,包括生产微电子产品,发电,化学反应以及加热和冷却。与大多数固体相比,这些常见流体的低热传递特性是热交换器高紧凑性和效率的关键障碍之一。增加工作培养基的热导电性的一种创造性方法是悬挂普通流体中的超铁金属或非金属固体粉末,因为大多数固体材料都比液体具有优越的导热性。如今,“纳米流体”一词在热传输领域非常明显。的热品质,包括粘度,特定热量,对流传热系数和临界热流,已成为几项研究的主题。
研究出版物(2020-22) 1. Karthik Rao MC、Rashmi L Malghan、Arun Kumar Shettigar、Shrikantha S Rao 和 Mervin A Herbert(2022)反向传播算法在基于神经网络的 AISI 316 面铣削低温加工技术识别响应中的应用,澳大利亚机械工程杂志,20:3,698-705,DOI:10.1080/14484846.2020.1740022 2. B. Mukherjee、KBM Swamy 和 S. Sen,“对静电梳状驱动 MEMS 执行器中减少不良梁弯曲的新分析”,IEEE 仪器和测量学报,第 69 卷,第 1 期。 2,第 488-500 页,2020 年 2 月 3. M Manvi、KBM Swamy,“基于微电子材料、微加工工艺、微机械结构配置的 MEMS 刚度评估:综述”,微电子工程,第 263 卷,2022 年,111854 4. Yashas M;Do Rosario Carvalho AD;Navin Karanth P,“Desai V. 气动肌肉执行器性能分析测试台的设计和制造”,机械工程讲义,DOI:10.1007/978-981-15-4739-3_3,第 23 卷,第 33-45 页,2021 年。 5. Mohith S;Upadhya AR;Navin KP;Kulkarni SM;和 Rao M,“精密运动压电执行器及其应用的最新趋势:综述”,智能材料与结构,DOI:10.1088/1361-665X/abc6b9,第 30 卷,第 13002 号,2021 年。6. S. Kumawat、S. Bhaktha 和 KV Gangadharan,“通过双齿开关磁阻电机提高扭矩性能:一种新方法”,2021 年。doi:10.1109/IPRECON52453.2021.9640842。7. UR Poojary 和 KV Gangadharan,“磁流变弹性体的频率、磁场和应变相关响应的材料建模”,材料科学杂志,第 56 卷,第 13002 号。 28,第 15752 15766 页,2021 年,doi:10.1007/s10853-021-06307-0。8. S. Mohith、N. Karanth P、SM Kulkarni、V. Desai 和 SS Patil,“用于生物医学应用的具有中心激励和环形激励的压电驱动无阀微泵性能比较”,智能材料与结构,第 30 卷,第 10 期,2021 年,doi:10.1088/1361-665X/ac1dbe。 9. KN Ravikumar、CK Madhusudana、H. Kumar 和 KV Gangadharan,“使用离散小波变换特征和 K 星算法对内燃机 (IC) 变速箱中的齿轮故障进行分类”,《工程科学与技术》,国际期刊,第 30 卷,2022 年,doi:10.1016/j.jestch.2021.08.005。10. M. S、NK P 和 SM Kulkarni,“环形激励凸起隔膜的分析以提高机械微泵的性能”,《传感器和执行器 A:物理》,第 335 卷,2022 年,doi:10.1016/j.sna.2022.113381。 11. Subramanya R Prabhu、Arun Shettigar、Mervin A Herbert 和 Shrikantha S Rao (2022) 机器变量对 AA6061/TiO2 摩擦搅拌焊缝微观结构和力学性能的影响,材料与加工技术进展,DOI:10.1080/2374068X.2022.2094072。12. H. Nejkar 和 KBM Swamy,“天然增强复合材料弹性特性的理论估计——比较分析”,IOP Conf. Ser. Mater. Sci. Eng.,第 1248 卷,第 012083 页,2022 年,doi:10.1088/1757-899X/1248/1/012083。13. Allien V;Kumar H;和 Desai V,“使用多属性决策进行自由振动分析和高强度和刚度复合材料的选择”,国际材料研究杂志,DOI:10.3139/146.111879,第 112 卷,第 189-197 页,2021 年。14. Rao M;Malghan RL;Shettigar AK;以及 Herbert MA,“Rao SS,低温加工技术相对于 SS316 无冷却液和有冷却液加工的优势”,《工程研究快报》,DOI:10.1088/2631-8695/abecd6,第 3 卷,第 15040 号,2021 年。
摘要在这项研究中,研究了添加到芳香纤维/环氧复合材料对这些复合材料机械性能的石墨烯量的影响。在研究中,将石墨烯纳米颗粒以四种不同的速率添加到环氧基矩阵中,并通过机械方法混合,然后使用手部铺铺和真空输注方法获得5层芳香芳烃环氧石墨烯复合板。样品进行弯曲测试和ASTM D3039进行拉伸测试,并进行了三分弯曲和拉伸测试。显微结构检查是在宏观显微镜下进行的。研究后,观察到在产生的复合材料的微观结构中发生了聚集。确定将石墨烯添加到芳香环氧树脂复合材料中提高了弯曲强度和弯曲模量,在添加了1%石墨烯的样品中观察到了最高的弯曲应力。与未依存的复合材料相比,弯曲强度在该样品中增加了约64%。此外,在未凝聚的样品中测量了最高的拉伸强度,在添加0.25%的石墨烯之后,由于结构中发生的石墨烯的聚集,拉伸强度降低了。关键字:石墨烯纳米颗粒,机械性能,芳香纤维,环氧复合材料
技术产品能力:开发RFC储能系统技术,该技术可以为月面和近表面任务提供持续可靠的电力,在这些传输中,光伏/电池或核选项可能是不可行的;对于月球表面应用,将RFC从TRL3提高到至少TRL5。
•数据库组成的96 x 97均等水平网格和90个垂直级别•数据库存储一个金星日数据以说明昼夜行为•考虑多个太阳能和云反照率方案
