对环境中病原体暴露的健康风险评估需要完整且最新的知识。随着科学出版物的快速增长和文献综述的规范化,基于人工智能 (AI) 技术的自动化方法可以帮助从文献中提取有意义的信息,并使文献综述更加高效。本研究的目的是确定是否可以使用深度学习和自然语言处理技术从 PubMed 上关于水传播病原体军团菌的科学出版物中提取定性和定量信息。该模型有效地提取了定性和定量特征,精度、召回率和 F 值分别为 0.91、0.80 和 0.85。人工智能提取的结果与手动信息提取相当。总体而言,人工智能可以可靠地从科学文献中提取有关军团菌的定性和定量信息。我们的研究为更好地理解信息提取过程铺平了道路,是利用人工智能从环境微生物学出版物中收集有关病原体特征的有意义的信息的第一步。
摘要:京津冀是我国重点发展区域,可再生能源产业尤受关注。本文旨在将空间信息与可再生能源产业相结合,揭示产业时空演变特征及其驱动因素。研究发现,京津冀产业表现出明显的集聚格局,京津冀区域可再生能源产业2005—2010年Moran’s I=0.385579,2010—2015年Moran’s I=0.319463,2015—2020年Moran’s I=0.329409。全局空间自相关分析显示,京津冀区域可再生能源产业集聚水平并未提高,但局部空间自相关显示,交通运输和商业水平较高的区域在空间上趋于显著集聚。通过Moran指数发现京津冀产业呈现出明显的集聚格局,通过热点分析发现产业集聚主要发生在北京、天津、石家庄和张家口,这可以用城市化带来的要素集聚效应来解释。但进一步计算区位商、赫尔曼系数和基尼系数,发现京津冀地区存在明显的区域差异,如单极集聚效应在减弱。进一步的三相空间椭圆更形象地揭示了京津冀地区可再生能源产业在过去20年中持续形成的良性产业扩张。产业从首都北京起步,向西南转移,带动了河北、天津等地可再生能源产业发展,促进了京津冀经济圈协同发展。
• 2021 年第九届隧道安全国际研讨会 (ISTSS) 最佳论文奖 • 2020 年香港研究资助局 (RGC) 香港博士研究生奖学金计划 • 2018 年中华人民共和国教育部国家奖学金 (研究生) • 2018 年浙江大学优秀研究生奖 • 2018 年浙江大学优秀研究生带头人奖 • 2017 年浙江省教育厅浙江省优秀毕业生 • 2016 年中华人民共和国教育部国家奖学金 (本科) • 2016 年浙江大学优秀学生一等奖学金 • 2016 年浙江大学科研创新奖学金 • 2015、2016 年浙江大学优秀学生带头人奖
京津冀作为我国大气污染最严重的地区,近年来受到广泛关注,京津冀区域环境指标的关联性研究较为广泛,但贸易活动中隐藏的城市大气污染物与经济利益尚不明确。本文基于城市级投入产出表,考察京津冀消费中蕴含的大气污染物与经济利益。研究结果表明,不同城市之间大气污染物和增加值的转移流导致京津冀地区大气污染与经济利益交换不平等。北京通过贸易获得的增加值(38.40%)高于京津冀消费需求带来的大气污染物当量(APE,1.75%);唐山、石家庄和邯郸排放的大气污染物高于它们通过贸易获得的利益。研究结果为城市间补偿机制的建立提供了依据。
太赫兹技术在数据通信、雷达探测、高分辨率成像等领域展现出巨大的发展潜力,但这些应用也面临着大气吸收和自由空间路径损耗导致的传输距离短的问题[1-3]。解决该问题的主要方法是增加天线增益来补偿这些损耗,但大多数高增益天线不易操控,传播角度固定,降低了系统的实用性。作为解决方案之一,太赫兹波前整形技术可以灵活地操控光束方向和波前特性,满足太赫兹系统的应用需求,例如在点对点通信系统中可以改善太赫兹光束方向性,以增加传播距离;在目标雷达系统中可以切换多光束波前特性,实现多区域检测[4,5]。在太赫兹高分辨率成像中,波前模式掩模可以切换,为系统提供更多的感知信息[6-8]。为了实现这些目标,太赫兹波前整形需要由多个通道合成,携带适当可变的相位信号。
摘要:光子计算因能以比数字电子替代方案高得多的时钟频率加速人工神经网络任务而受到广泛关注。特别是由马赫-曾德尔干涉仪 (MZI) 网格组成的可重构光子处理器在光子矩阵乘法器中很有前途。希望实现高基 MZI 网格来提高计算能力。传统上,需要三个级联 MZI 网格(两个通用 N × N 酉 MZI 网格和一个对角 MZI 网格)来表示 N × N 权重矩阵,需要 O ( N 2 ) 个 MZI,这严重限制了可扩展性。在此,我们提出了一种光子矩阵架构,使用一个非通用 N × N 酉 MZI 网格的实部来表示实值矩阵。在光子神经网络等应用中,它可能将所需的 MZI 减少到 O ( N log 2 N ) 级别,同时以较低的学习能力损失为代价。通过实验,我们实现了一个 4 × 4 光子神经芯片,并对其在卷积神经网络中的性能进行了基准测试,以用于手写识别任务。与基于传统架构的 O (N 2) MZI 芯片相比,我们的 4 × 4 芯片的学习能力损失较低。而在光学损耗、芯片尺寸、功耗、编码误差方面,我们的架构表现出全面的优势。
Tianwen-1火星进入车辆于2021年5月15日在7:18(UTC+8)成功降落在南部乌托邦策划人的火星表面上。Tianwen-1火星探索任务包括三个主要部分:轨道,着陆和巡游。Tianwen-1航天器于2021年2月于2020年7月23日从Wenchang登上CZ-5B登上CZ-5B,并于2021年2月将其注入了火星轨道,并在轨道上停留了两个半月。在此期间,进行了着陆点上的sand storm观测和一般的光学监视任务。图。1。入口接口为125公里,速度为4.7 km/s。进入车辆在大约−10°时进行了修剪角度的攻击角度,在大部分飞行中进行了银行操作的升力,并在大约60公里的高度上升温。部署了一个装饰选项卡,以2.8马赫部署,以修剪攻击角度0。降落伞部署是在
1药房,有机化学系,位于Bydgoszcz的Ludwik Rydygier Collegium Medicum,Toru´n的Nicolaus Copernicus University,波兰87-100; magda.kowalska@doktorant.umk.pl(M.K。); l。finfifjalkowski@cm.umk.pl(。)2药物学系,Jagiellonian大学医学院药物学主席,波兰Krakow 30-688 Medyczna St. 9; monika.kubacka@uj.edu.pl(M.K。); kinga.salat@uj.edu.pl(K.S.)3尼古拉斯·哥白尼大学Bydgoszcz卫生科学学院心脏病学和临床药理学系,75 Ujejskiego St.,85-168 Bydgoszcz,波兰; g.grzesk@cm.umk.pl 4 4 Gagarina St. Nicolaus Copernicus大学化学学院聚合物的物理化学和化学化学,波兰87-100 Toru´n; jacek.nowaczyk@umk.pl *通信:alicja@cm.umk.pl
每个合格研究的数据提取和质量评估,两名研究人员(A.H.和Z.T.)独立提取以下项目:(1)第一作者,出版年,受试者居住的国家或地区; (2)细化剂的特征,包括样本量,性别和年龄; (3)研究设计和数据源; (4)RA和DM的诊断标准; (5)暴露和非暴露队列的结果数; (6)原油和调整的风险估计,95%CI; (7)调整。纳入研究的质量由纽卡斯尔 - 奥特瓦量表[14]评估,其中根据节(四个项目,一颗恒星),可比性(一项,多达两颗恒星)和结果(三个项目,一颗恒星)对研究进行了判断。在这项荟萃分析中,我们将质量分级为好(≥7颗星),公平(4-6颗星)和差(<4星)[15]。我们通过对潜在的混杂因素进行了充分调整(一颗年龄的一颗恒星,至少有五个混杂因素中的三个星星,包括糖尿病家族史,BMI,BMI或其他超重/obe的措施,合并症,合并症,糖皮质激素和种族的使用)来评估兼容性。该项目“随访时间足够长,以至于结局发生”,通过研究期是否超过5年来评估。
免责声明:本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构或加利福尼亚大学的董事会的观点和观点。