Azevedo, S., Cruz-Machado, V., Hofstetter, J., Cudney, E., Yihui Tian. (2013),章节标题:‘绿色和弹性供应链实践对于汽车行业竞争力的重要性’,逆向供应链问题与分析,CRC Press,ISBN 978-1-439-89902-1,229-252。
◆Azevedo,S.,Cruz-Machado,V.,Hofstetter,J.,Cudney,E.,Yihui Tian(2013)。章节标题:“绿色和有弹性的SCM实践对汽车内部的竞争力的重要性”,反向供应链问题和分析,CRC出版社,ISBN 978-1-439-89902-1,229-252。
依赖于光学读出场的传感和计量平台中,最小可分辨信号越来越受到标准量子极限 (SQL) 的限制,而标准量子极限由光子散粒噪声决定。因此,散粒噪声降低技术对于下一代传感器的开发至关重要,这些传感器可用于从土木工程到生物化学等各种应用,以及用于能够分辨以前被量子噪声所掩盖的材料特性的新型显微镜平台。本次演讲展示了使用双模压缩光进行亚散粒噪声限制量子生物传感方面取得的一些重大进展,并重点介绍了机器学习算法的实现,该算法用于恢复量子信息,否则这些信息将被噪声所掩盖,这些信息位于查塔努加市中心的世界上第一个软件可编程量子网络基础设施中。
本系列从所有领域的角度解决了与财务和应用研究有关的数学理论的新兴进步。这是一系列专着,并贡献了有关财务数学的深入探索,例如应用数学,统计,优化和科学计算,以及诸如人工智能,封闭链,云计算和大数据等技术的应用。本系列的全面理解和实用应用程序的全面应用和Finematics和Finftech的实用性为特征。本书系列涉及实用计划和公司中财务数学和Finefech的尖端应用。金融数学和金融科技书籍系列促进了新兴理论和技术数学的交流以及学术界与金融实践者之间的财务数学和网络技术的交流。它的目的是及时转移数学和计算机科学领域的最新技术,以实现财务的应用。作为一个收藏,本书系列为学术界,财务社区,与财务相关的政府员工以及其他任何希望扩大财务数学知识和资深技术知识的人提供了宝贵的资源。
每个合格研究的数据提取和质量评估,两名研究人员(A.H.和Z.T.)独立提取以下项目:(1)第一作者,出版年,受试者居住的国家或地区; (2)细化剂的特征,包括样本量,性别和年龄; (3)研究设计和数据源; (4)RA和DM的诊断标准; (5)暴露和非暴露队列的结果数; (6)原油和调整的风险估计,95%CI; (7)调整。纳入研究的质量由纽卡斯尔 - 奥特瓦量表[14]评估,其中根据节(四个项目,一颗恒星),可比性(一项,多达两颗恒星)和结果(三个项目,一颗恒星)对研究进行了判断。在这项荟萃分析中,我们将质量分级为好(≥7颗星),公平(4-6颗星)和差(<4星)[15]。我们通过对潜在的混杂因素进行了充分调整(一颗年龄的一颗恒星,至少有五个混杂因素中的三个星星,包括糖尿病家族史,BMI,BMI或其他超重/obe的措施,合并症,合并症,糖皮质激素和种族的使用)来评估兼容性。该项目“随访时间足够长,以至于结局发生”,通过研究期是否超过5年来评估。
Ph.D.在Yu Tian教授的监督下,在佛罗里达大学(UCF)的计算机科学系有开放式开业。 学生将获得博士学位。计算机科学学位。 学生将有机会与来自计算机视觉研究中心(CRCV)和UCF新成立的AI INIEAVE的世界知名研究人员合作和合作。 天田博士的实验室促进了一种包容性的,互联网和培养文化。 将通过研究助理,实习,合作项目,学术访问,网络机会和奖学金来鼓励和支持学生。 UCF是计算机视觉和AI的领先插图,在计算机视觉中排名第八,AI排名第47位,根据CSRANKINGES.org的计算机科学排名第47位,在计算机科学上排名第55。Ph.D.在Yu Tian教授的监督下,在佛罗里达大学(UCF)的计算机科学系有开放式开业。学生将获得博士学位。计算机科学学位。学生将有机会与来自计算机视觉研究中心(CRCV)和UCF新成立的AI INIEAVE的世界知名研究人员合作和合作。天田博士的实验室促进了一种包容性的,互联网和培养文化。将通过研究助理,实习,合作项目,学术访问,网络机会和奖学金来鼓励和支持学生。UCF是计算机视觉和AI的领先插图,在计算机视觉中排名第八,AI排名第47位,根据CSRANKINGES.org的计算机科学排名第47位,在计算机科学上排名第55。
摘要:在DNA纳米技术的指导下建造的DNA纳米结构在过去的二十年中迅速发展,站在生物医学领域的最前沿。其中,DNA四面体纳米疗法(DTN)已成为最具代表性的DNA纳米结构之一。DTN很容易通过四个单链DNA的一步退火而形成。由于其独特的优势,例如简单和稳定的结构组成,高合成的效率,均匀的纳米尺寸,高的可编程性和良好的生物相容性,DTN已被广泛用于生物学检测,生物学成像,药物输送以及其他领域,并显示出巨大的潜力。尤其是在检测与癌症相关的生物标志物和抗癌药物的递送时,基于DTN的纳米平移形式取得了巨大的成功。在这篇综述中,我们专注于DTN在癌症诊断和治疗中的应用以及挑战和前景。
心源性休克 (CS) 是一种高度致命的疾病,是发病率和死亡率的重要原因 (1)。根据美国最近的登记数据,估计每 100,000 例住院患者中约有 408 例因 CS 引起,平均住院死亡率为 37% (2)。无论 CS 患者是否患有糖尿病,都有许多因素导致他们易患高血糖症。炎症反应引起的交感神经刺激、心输出量减少导致的组织灌注不良、应激反应增加、血管加压素给药以及获得性胰岛素抵抗都会导致这种情况下血糖异常 (3)。应激性高血糖 (SIH) 是因急性疾病住院患者的一种暂时性疾病,在疾病消退后可自行缓解 (4)。无论重症患者入院时是否患有糖尿病,SIH 都很常见,并且似乎是疾病严重程度的一个标志 (5)。此外,关于 SIH 与预后的关系也一直存在争议(6,7)。尽管此前已证实应激性高血糖对心血管疾病的预后有害,但目前尚无证据表明应激性高血糖对 CS 患者,尤其是危重患者的预后具有相关性(8)。建议使用根据平均血糖状态进行调整的应激性高血糖比值(SHR)来评估实际血糖水平。先前的一些研究提出,SHR 可作为急性高血糖状态的指标,也可作为危重患者不良结局的预后指标(9-11)。因此,本研究旨在探讨 SIH 对重症监护病房内危重 CS 患者预后的影响,希望临床医生能够警惕危重 CS 患者的应激性高血糖,并能够意识到应激性高血糖可能带来的不良或伴随影响。
摘要:光子计算因能以比数字电子替代方案高得多的时钟频率加速人工神经网络任务而受到广泛关注。特别是由马赫-曾德尔干涉仪 (MZI) 网格组成的可重构光子处理器在光子矩阵乘法器中很有前途。希望实现高基 MZI 网格来提高计算能力。传统上,需要三个级联 MZI 网格(两个通用 N × N 酉 MZI 网格和一个对角 MZI 网格)来表示 N × N 权重矩阵,需要 O ( N 2 ) 个 MZI,这严重限制了可扩展性。在此,我们提出了一种光子矩阵架构,使用一个非通用 N × N 酉 MZI 网格的实部来表示实值矩阵。在光子神经网络等应用中,它可能将所需的 MZI 减少到 O ( N log 2 N ) 级别,同时以较低的学习能力损失为代价。通过实验,我们实现了一个 4 × 4 光子神经芯片,并对其在卷积神经网络中的性能进行了基准测试,以用于手写识别任务。与基于传统架构的 O (N 2) MZI 芯片相比,我们的 4 × 4 芯片的学习能力损失较低。而在光学损耗、芯片尺寸、功耗、编码误差方面,我们的架构表现出全面的优势。
头颈癌是全球第六个最常见的癌症(Warnakulasuriya,2009年),口服和口咽癌是最常见的亚型。烟草和酒精消耗(Hashibe等,2009),人乳头瘤病毒(HPV)感染(Ang等,2010)和特定的性行为(Heck等,2010)已被认为是口腔和口腔和口腔咽部癌症癌症危险因素。最近,人们对癌症与微生物组之间的联系越来越多。特别是,在肠道微生物组中已经观察到癌症相关的生物标志物(Cullin等,2021)。肠道菌群是肠道中存在的细菌种类的集合。肠道微生物在肿瘤中的作用可以分为局部和远端角色(Matson等,2021)。除了特异性肠道微生物在局部致癌作用中具有的重要作用外,肠道微生物还可以改变宿主的整体免疫系统,从而导致癌症(Castellarin等,2012; Amieva and Peek,2016)。肠道微生物与肠上皮之间存在天然的解剖屏障,主要由分泌肠道粘液的杯状细胞组成(Kim和Ho,2010)和产生抗菌肽的细胞(Salzman等人(Salzman et al。,2007))。因此,肠道微生物与免疫系统之间的接触受到限制。但是,特定的微生物会影响肠道屏障的完整性。益生菌调节免疫系统是一种潜在的抗肿瘤策略(Vétizou等,2015)。当这种完整性被破坏时,癌的数量越来越多,通过受损的肠道障碍循环(Rajagopala等,2017);此外,诱导了炎症或免疫抑制,在促进癌症中起间接作用(Yu and Schwabe,2017)。An example illustrating this distal role is that the gut microbiota can promote hepatocellular carcinoma and pancreatic cancer growth/progression/invasion and metastasis, which contain no known microbiome, by elevating cancer- promoting in fl ammatory microbial-associated molecular patterns such as lipopolysaccharides ( Dapito et al., 2012 ; Ochi et al., 2012 ).肠道微生物可以通过调节肠上皮屏障的原发性和继发性淋巴机构来调节免疫力,从而影响肿瘤微环境(Gopalakrishnan等,2018)。先前已经报道了肠道微生物与肠肿瘤敏感性之间的关联(Yachida等,2019)。肠道微生物群已被证明通过调节免疫细胞功能,影响炎症反应,调节免疫耐受性(Zhou等,2021)和产生代谢物(Zhang等,2019)。然而,肠道菌群与肠胃外肿瘤(尤其是口咽和口服癌症)之间的因果关系尚不清楚。Mendelian随机化(MR)是一种统计方法,用于根据工具变量(遗传变异)评估暴露与结果之间的因果关系,可以看作是随机对照试验(RCT)的自然类似物。因此,我们旨在研究肠道菌群是否与口服和与传统的黄金标准RCT相反,参与者根据其基因型分配,从而减少了反向因果关系和混杂因素(例如道德和社会经济因素)的影响。