Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)
∗ 之前发布的名称是“创新网络和创新政策”。我们感谢 Chad Jones(编辑)、三位匿名审稿人、Philippe Aghion、Manuel Amador、Paul Antras、David Atkin、Salome Baslandze、Ariel Burstein、Lorenzo Caliendo、Vasco Carvalho、Ben Golub、Jill Grennan、Matt Jackson、Ben Jones、Chad Jones、Hugo Hopen-hayn、Bill Kerr、Pete Klenow、Sam Kortum、Atif Mian、Ezra Field、Bruno Pelligrino、Alessandra Peter、Stephen Redding、Peter Schott、Kjetil Storesletten、Alireza Tahbaz-Salehi、Aleh Tsyvinski、John Van Reenen、Jaume Ventura、Heidi Williams 和 Kei-Mu Yi 提供的有益反馈。我们还感谢许多研讨会和会议参与者的见解和评论。 Xugan Chen、Tianyu Fan 和 Daojing Zhai 提供了出色的研究协助。 † 普林斯顿大学经济学系和 NBER,ernestliu@princeton.edu。 ‡ 耶鲁大学管理学院和 NBER。
作者感谢 Nancy Qi、Seema Jayachandran、Ameet Morjaria 和 Chris Udry 的指导;阿里尔·本伊沙,尼古拉·比安奇,理查德·布卢姆,利维·博克赛尔,曹一鸣,里卡多·达希斯,阿克塞尔·德雷尔,鲁本·杜兰特,乔治·叶戈罗夫,雷·菲斯曼,安德烈亚斯·福克斯,马丁·菲斯宾,凯·格林,悉达多·乔治,约翰内斯·豪斯霍费尔,马泰奥·马格纳里科特,阿列克谢·马卡林,泰德·米格尔,杰西卡·潘,迈克尔Porcellacchia、Paul Schaudt、Tuan-Hwee Sng、Miguel Talamas、Rainer Thiele、Christoph Trebesch、Shaoda Wang、Jaya Wen、David Yang、Song Yuan 以及 NBER、巴塞罗那 GSE 夏季论坛以及无数其他会议和研讨会的参与者提供了有用的评论; Kevin Acker、Aidan Chau、Manfred Elfstrom、Wenwei Peng、Shaoda Wang 和 Cheryl Wu 提供数据帮助;John Acker 提供文字编辑;Zhentao Jiang、O'Rianna Yew Jingqing、Lan Wang、Zixin Wei、Zhiyao Xu、Johnny Lee Zhuang Yu、Tianyu Zhang,尤其是 Chuyue Tian 提供出色的研究协助。作者非常感谢教育部 AcRF Tier 1 拨款 FY2023-FRC2-006 的资助。本文部分内容的旧版本之前以“中国对外援助:政治决定因素和经济影响”为标题发布,首次提交于 2018 年 6 月,并于 2021 年 10 月作为草稿发布。
本报告是在克里斯托夫·普斯(Christoph Pusch)的指导和监督下(城市,灾难风险管理,弹性和土地,欧洲和中亚),玛丽娜·韦斯(Marina Wes)(欧洲联盟国家的国家主任)和Sameh Wahba的指导和监督的。它是根据Zuzana Stanton-Engdes(高级灾难风险管理专家)和Solene Dengler(灾难风险管理和气候变化适应专家)的领导和协调准备的。Expert inputs were provided by Paul Watkiss (Senior Climate Change Adaptation Expert), Jun Rentschler (Senior Economist), Maryia Markhvida (Senior Disaster Risk Management Expert), Alan O'Connor (Senior Multi-Hazard Engineer), Zahraa Saiyed (Senior Earthquake Engineer), Stuart Fraser (Senior Disaster Risk Management Expert), Krunoslav Katic (Senior Disaster Risk Management Expert), Daniel Pele (Senior Economist), Tianyu Zhang (Climate Economics Analyst), Dimitar Nachev (Disaster Risk Management Expert), Soraya Ridanovic (Disaster Risk Management Analyst), Mikhail Sirenko (Extreme Heat Expert), Sandra Vlašic (Climate Expert), Anda Anica (Disaster Risk Management Analyst), Enock Nyamador (Risk Data and GIS expert), Momchil Panayotov (Wildfires and林业专家),丹尼尔·约翰逊(环境经济学家)和彼得·摩尔(野火风险专家)
Chiral kagome superconductivity modulations with residual Fermi arcs in KV 3 Sb 5 and CsV 3 Sb 5 Authors: Hanbin Deng 1 *, Hailang Qin 2 *, Guowei Liu 1 *, Tianyu Yang 1 *, Ruiqing Fu 3 *, Zhongyi Zhang 4 , Xianxin Wu 3 †, Zhiwei Wang 5,6 †,Youguo Shi 7,8,9†,Jinjin Liu 5,6,Hongxiong Liu 7,8,Xiao-Yu Yan 1,Wei 1,Wei 1,Xitong Xu 10,Yuanyuan Zhao 2,Yuanyuan Zhao 2,Mingsheng Yi 11,Gang Yi 11,Gang Xu 11,Gang Xu 11,Hendrik Hohmann 12,Hendrik Hohmann 12,hendrik Hohmann 12,sofie castro castro castrun decto and dectoholbükk。 Sen Zhou 3,Guoqing Chang 15,Yugui Yao 5,6,Qianghua Wang 16,Zurab Guguchia 17,Titus Neupert 13,Ronny Thomale 12,Mark H. Fischer 13,Jia-Xin Yin Yin 1,2†物理学:1个物理学:1个科学和科学技术系,Shengong,Shengong。2广东港量子科学中心大湾大湾地区(广东),中国深圳。 3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。 4香港科学技术大学物理系,中国香港清水湾。2广东港量子科学中心大湾大湾地区(广东),中国深圳。3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。4香港科学技术大学物理系,中国香港清水湾。4香港科学技术大学物理系,中国香港清水湾。
(罗马尼亚) 17. Jan den Boer,弗罗茨瓦夫环境与生命科学大学助理教授(波兰) 18. Mattias Eriksson,瑞典农业科学大学副教授(瑞典) 19. Tianyu Zhang Jin,加泰罗尼亚理工大学食品浪费研究博士生(加泰罗尼亚) 20. Claudio Beretta 博士,苏黎世应用技术大学(瑞士) 21. Farina Kiefer,德国环境援助组织食品与农业专家(德国) 22. Alexander Theodoridis,BOROUME 创始成员兼首席执行官(希腊) 23. Héctor Barco,Fundació Espigoladors 食品浪费专家(西班牙) 24. Anna Strejcová,Zachraň jídlo 食品浪费专家和研究员(捷克共和国) 25. Martin Bowman,Feedback Global 高级政策与活动经理(欧洲) 26. Christophe Diercxsens,Too Good To Go 公共事务总监(全球) 27. Paula Unland,Restlos Glücklich Berlin 教育顾问(德国) 28. Piotr Barczak,波兰零废物协会循环经济顾问(波兰) 29. Alexandra Ghenea,Ecoteca 副总裁(罗马尼亚) 30. Paola Hernández Olivan,Mensa Cívica 项目协调员(西班牙) 31. Mercè Boy Roura,维克大学 - 加泰罗尼亚中央大学 BETA 技术中心
作者高亚民 1,2,3,4,# , 方翠婷 1,2,3,4,# , 周彪 1,5,6 , HM Adnan Hameed 1,2,3,4 , 孙长利 3,7 , 田西荣 1,2,3,4 , 何静 1,2,4,8 , 韩杏丽 1,2,3,4 , 张涵1,2,4,9 , 李军 10 , 居建华 3,7 , 陈新文 6 , 钟南山 6 , 马俊英 3,7,* , 熊晓丽 1,2,3,6,* , 张天宇 1,2,3,4,6,* 单位 1 中国科学院广州生物医药与健康研究院呼吸疾病国家重点实验室,广州510530,中国。 2 中国科学院广州生物医药与健康研究院粤港澳传染性呼吸道疾病联合实验室,广州 510530。3 中国科学院大学,北京 100049。4 中国科学院广州生物医药与健康研究院中国-新西兰“一带一路”生物医药与健康联合实验室,广州 510530。5 广州医科大学,广州 510180。6 广州国家实验室,广州 510005。7 中国科学院热带海洋生物资源与生态重点实验室、广东省海洋药物重点实验室、中国科学院南海海洋研究所海洋微生物研究中心,广州 510301。8 安徽大学物质科学与信息技术研究所,合肥 230601。 9 中国科学技术大学生命科学学院,合肥 230026。10 上海科技大学上海免疫化学研究所、生命科学与技术学院,上海 201210。
visii。参考[1.]P. Shor。(1997)。用于量子分解和离散对数的多项式时间算法,Siam J. Comput,26(5),1484–1509。[2.]Pinto,J。(2022)。Quantum加密后挑战,13。[3.]Mavroeidis,V.,Vishi,K.,Zych,M。D.,JøsangA。(2018)。量子计算对当前密码学的影响,25。[4.]Christopher,P。(2019)。确定量子加密迁移和加密敏捷性中的研究挑战,30。[5.]Barker,W。,Consulting,D.,Polk,W。(2021)。 为量词后加密准备做好准备:探索与采用和使用量子后加密算法相关的挑战,10。 [6.] 穆迪,D。(2022)。 状态报告在NIST Quantum加密标准化过程的第三轮,国家标准技术研究院,盖瑟斯堡,35。。 [7.] liv>。 (2011)。 liv>。 [8.] Chen,L.,Jordan,S.,Liu,Y-K,Moody,D.,Peralta,R.,Perlner,R.,Smith-Tone,D。(2016年)。 关于量子后密码学的报告。 (国家标准技术研究所,马里兰州盖瑟斯堡),NIST内部报告(NISTIR),23。 [9.] Chen,L。(2017)。 量子时间中的加密标准:旧酒店中的新葡萄酒? IEEE安全与隐私,15(4),51-57。Barker,W。,Consulting,D.,Polk,W。(2021)。为量词后加密准备做好准备:探索与采用和使用量子后加密算法相关的挑战,10。[6.]穆迪,D。(2022)。状态报告在NIST Quantum加密标准化过程的第三轮,国家标准技术研究院,盖瑟斯堡,35。[7.]liv>。(2011)。liv>。[8.]Chen,L.,Jordan,S.,Liu,Y-K,Moody,D.,Peralta,R.,Perlner,R.,Smith-Tone,D。(2016年)。 关于量子后密码学的报告。 (国家标准技术研究所,马里兰州盖瑟斯堡),NIST内部报告(NISTIR),23。 [9.] Chen,L。(2017)。 量子时间中的加密标准:旧酒店中的新葡萄酒? IEEE安全与隐私,15(4),51-57。Chen,L.,Jordan,S.,Liu,Y-K,Moody,D.,Peralta,R.,Perlner,R.,Smith-Tone,D。(2016年)。关于量子后密码学的报告。(国家标准技术研究所,马里兰州盖瑟斯堡),NIST内部报告(NISTIR),23。[9.]Chen,L。(2017)。 量子时间中的加密标准:旧酒店中的新葡萄酒? IEEE安全与隐私,15(4),51-57。Chen,L。(2017)。量子时间中的加密标准:旧酒店中的新葡萄酒?IEEE安全与隐私,15(4),51-57。[10.]Zhaohui,C.,Yuan,M.,Tianyu,C.,Jingqiang,L.,Jiwu,J.(2020)。fPGA上的晶体 - 凯伯的高性能面积多项式环处理器,25-35。[11.]Duarte,N.,Coelho,N.,Guarda,T。(2021)。 社会工程:攻击艺术。 in:瓜达,T.,Portela,F.,Santos,M.F。 (eds)技术,信息,创新和可持续性的高级研究。 artiis。 计算机和信息科学中的通信,第1485卷。 Springer,Cham,127。 [12.] 班еш。 з这些。 limlistem。 - хх。 2019。 - 115。 https://openarchive.ua/server/api/core/bitstreams/ed01c4-0251-43f7-9851- ad57979797f1de8e/content#page#page = 59 [13. 13. 13.] Limniotis,K。(2021)。 加密作为保护基本人权的手段,密码学,第1卷。 5,34。 [14.] Chen,L。(2016)。 关于量子后加密术的报告,国家标准技术研究所,NIST IR 8105,23-45。 [15.] Hoffstein,J.,Pipher J.,Silverman J. H. Ntru:基于环的公共密钥加密系统,算法编号理论,第1卷。 1423,J。P。Buhler编辑。 柏林,海德堡:施普林格柏林海德堡,267–288。Duarte,N.,Coelho,N.,Guarda,T。(2021)。社会工程:攻击艺术。in:瓜达,T.,Portela,F.,Santos,M.F。(eds)技术,信息,创新和可持续性的高级研究。artiis。计算机和信息科学中的通信,第1485卷。Springer,Cham,127。[12.]班еш。з这些。limlistem。- хх。2019。- 115。 https://openarchive.ua/server/api/core/bitstreams/ed01c4-0251-43f7-9851- ad57979797f1de8e/content#page#page = 59 [13. 13. 13.]Limniotis,K。(2021)。加密作为保护基本人权的手段,密码学,第1卷。5,34。[14.]Chen,L。(2016)。 关于量子后加密术的报告,国家标准技术研究所,NIST IR 8105,23-45。 [15.] Hoffstein,J.,Pipher J.,Silverman J. H. Ntru:基于环的公共密钥加密系统,算法编号理论,第1卷。 1423,J。P。Buhler编辑。 柏林,海德堡:施普林格柏林海德堡,267–288。Chen,L。(2016)。关于量子后加密术的报告,国家标准技术研究所,NIST IR 8105,23-45。[15.]Hoffstein,J.,Pipher J.,Silverman J. H. Ntru:基于环的公共密钥加密系统,算法编号理论,第1卷。1423,J。P。Buhler编辑。 柏林,海德堡:施普林格柏林海德堡,267–288。1423,J。P。Buhler编辑。柏林,海德堡:施普林格柏林海德堡,267–288。
Philip Nakashima 副教授 1、Yu-Tsun Shao 博士 2,3、Zezhong Zhang 博士 4,5,6、Andrew Smith 博士 7、Tianyu Liu 博士 8、Nikhil Medhekar 教授 1、Joanne Etheridge 教授 7,9、Laure Bourgeois 教授 1,9、Jian-Min Zuo 教授 10,11 1 澳大利亚克莱顿莫纳什大学材料科学与工程系,2 美国洛杉矶南加州大学 Mork Family 化学工程与材料科学系,3 美国洛杉矶南加州大学纳米成像核心卓越中心,4 比利时安特卫普大学材料研究电子显微镜 (EMAT),5 比利时安特卫普大学 NANOlab 卓越中心,6 英国牛津大学材料系,7 克莱顿莫纳什大学物理与天文学院,澳大利亚,8 日本仙台东北大学先进材料多学科研究所,9 澳大利亚克莱顿莫纳什大学莫纳什电子显微镜中心,10 美国厄巴纳-香槟伊利诺伊大学材料科学与工程系,11 美国厄巴纳-香槟伊利诺伊大学材料研究实验室,背景包括目标我们着手对非均质晶体材料中纳米结构周围的键合电子密度进行首次位置分辨测量。迄今为止,所有键合电子密度和电位研究仅涉及均质单相材料;然而,大多数为我们服务的材料由于其包含的纳米结构而具有混合特性,这通常是设计使然。我们还注意到,材料缺陷无处不在且不可避免,因此我们可以从单一均质晶体的名义上完美的区域推导出材料特性的假设在范围和“实际”应用方面是有限的。这项工作旨在提供一种新功能,用于查询纳米结构和非均质材料中纳米结构周围的键合电子密度。我们的首次尝试涉及名义纯度(99.9999+%)铝中的纳米空隙。在实现这一目标的过程中,我们必须准确绘制空位浓度并确定空位引起的相关晶格收缩,以便能够精确测量晶体势和电子密度的傅立叶系数(结构因子)(误差小于 0.1%),因此我们取得了多项发现。© 作者,由 EDP Sciences 出版。这是一篇开放获取文章,根据知识共享署名许可 4.0 条款分发(https://creativecommons.org/licenses/by/4.0/)。