I. 引言 使用可再生能源已被认为是应对人为气候变化的关键战略。这些能源被认为是可持续的,因为它们可以自然补充并且不会产生温室气体。实现低碳经济和应对全球气候变化挑战的重要一步是实施可再生能源替代品。这场绿色革命是由太阳能和风能引领的。由于此类资源丰富,将波浪能和潮汐能等新形式的可再生能源纳入当前的资源组合将有助于向 100% 可再生能源的未来过渡 [1]。利用多种资源组合将提高能源供应系统的可靠性,并降低将可再生能源纳入当前发电结构的成本。能源互补的概念是指多种可变的可再生能源协同工作以提高系统可靠性的能力,从而减少能源发电不足的时期。可再生能源资源的互补性评估对于设计这些资源的最佳组合以满足负荷要求至关重要。
(iv) 申请人应在申请中包括有关项目地点中切萨皮克湾中上游中盐度水域(即盐度为千分之五至十八)内角草 (Zannichellia palustris) 的存在、不存在或接近程度的信息。角草的分布信息需要申请人在每年 5 月 1 日至 6 月 15 日期间对该区域进行最近的实地调查(即雇用具有相关经验的调查队)。角草在马里兰州切萨皮克湾低盐度水域地图附录 B 中所示的地理排除线上游和马里兰州大西洋沿岸海湾的潮汐水域中不太普遍或不出现。因此,这些区域不需要有关角草存在或接近程度的文件。申请人可以请求工程兵团对角草进行调查;但是,这将需要 B 类审查,并且可能会导致审查时间严重延迟。
韩国仁川根特大学全球校园环境与能源研究中心; b比利时奥斯达德蓝桥,根特大学生物科学工程学院动物科学与水生生态学系; C BIO环境科学技术(最佳)实验室,根特大学全球校园,韩国仁川;布鲁塞尔应用科学与艺术大学,比利时布鲁塞尔;比利时根特的植物系统生物学中心; f藻类(SAG)的实验性植物学和培养物收集,哥廷根大学,德国哥廷根; G比利时根特大学生物学系生物学和水生生态学实验室; H Waddenacademie,Huis Voor de Wadden,Leeuwarden,荷兰; I荷兰Yerseke皇家尼奥斯和乌得勒支大学河口和三角洲系统系; J根特大学绿色化学技术系,比利时根特; K韩国仁川根特大学全球校园生物系统与生物技术数据科学中心; l印度Bareilly的MJP Rohilkhand University植物科学系; M Life Sciences,生命科学学院与生物工程学院,仁川国立大学,韩国仁川
已确定在 EIA 中纳入的与自然环境相关的主要问题包括沿海过程、地质、水质和悬浮沉积物以及噪音。在生物环境方面,主题包括保护指定、鸟类学、大型海洋物种、底栖和潮间带生态学、陆地生态学以及鱼类和贝类生态学。在人类环境方面,考虑的问题包括航运和航行、商业渔业、景观和海景、考古学和文化遗产以及包括旅游和娱乐在内的社会经济考虑因素。对于每个主题,都会确定项目生命周期内的潜在影响,概述建立稳健基线和影响评估的研究方法,并确定潜在的缓解措施。
储能(CCS)和热能与运输部门的脱碳。虽然光伏和风能(重点是海上风能)的装机容量最大,但这些间歇性可变能源面临着复杂的系统集成挑战,尤其是由于平衡和储备要求的增加以及极端天气条件下的长期可靠性、安全性和弹性问题。1 因此,能源资源多样化至关重要,同时还要提高系统灵活性以应对低碳能源资源的变化。在此背景下,潮汐流(TS)技术可以成为未来能源结构的一部分,由于潮汐能分布与光伏和风能分布之间的相关性较低,因此可以提高其多样性。2 新兴研究表明,采用潮汐流能源可以增强供需平衡 3,4
英国在潮汐能等尖端清洁技术的创新以及制定推动净零排放的政策和监管机制方面具有显著优势。英国的差价合约机制在降低海上风电发电成本方面取得了显著成功。但尽管英国在部署海上风电方面已跃升为领导者,但在这一过程中,英国在很大程度上错过了供应链机会。潮汐能是一个新兴领域,英国目前在全球处于领先地位。与风力发电的经验不同,英国有机会从一开始就将国内部署目标与强大的国内供应链支持结合起来。这种方法还有可能通过边做边学和规模经济来降低潮汐能的成本,就像风能和太阳能发电成本中已经看到的那样。鉴于全球竞相从净零排放中获取经济利益的竞争日益激烈,确定和建设潮汐能等现有优势领域的国内产能应该是英国的战略重点。
摘要:本案例研究基于实际项目和咨询工作,将实际经验与经验和理论文献的审查和分析相结合。潮汐能 (TSE) 仍是一项新兴技术,但可预测性远高于太阳能和风能等传统替代能源。潮汐能仍比其他可再生能源技术昂贵,因此,找到合适的地点以启动学习过程非常重要,从而将成本降低到具有竞争力的水平,就像太阳能和风能技术一样。研究发现,菲律宾(和其他亚洲国家)小岛的潮汐能初始运行位置最为合适,因为可以替换昂贵且污染严重的柴油发电机,并建立可靠的 24 小时电力供应。不同场景下的不同评估方法表明,在正常情况下,潮汐能、太阳能和电池存储的混合组合在财务和经济上优于现有的基于化石能源的发电站以及单独的太阳能。然而,尽管表面上数学精确,传统的金融方法并不总是可靠的,而且必须仔细分析所使用的参数,特别是当我们处理快速变化的创新技术时。在全球变暖的时代,我们还必须考虑一个有争议的问题,即在选择化石替代品时评估温室气体造成的损害。在评估和规划可再生能源技术时,工程技术知识很重要,但还不够。由于融资是大多数可再生能源技术的关键问题,这些技术前期成本高,摊销期长,因此,全面、可靠的财务和经济分析是必要的,这不仅可以避免以后的财务失败,还可以吸引私人投资者、银行和政府机构等利益相关者支持尚不知名的技术。
地球系统模型被广泛用于估计湿地范围的未来变化,但不会将表面高度变化(SEC)纳入预测湿地对海平面上升的真实反应(SLR)。使用机器学习模型(MLM)来研究多个驱动因素对潮汐沼泽中SEC和沉积物积聚率(SAR)和地球系统模型的影响(即综合气候和湿地迁移模型)的开发是为了预测潮汐沼泽对SLR的反应。地球系统模型结合了MLM发现的影响SEC的因素。首先,合成了有关潮汐沼泽的SAR和SEC的全球数据,并使用MLM检查SEC和SAR的驱动因素,包括潮汐范围和频率,沉积物载荷,降水量,高度,纬度,海冰和/或相对SLR(RSLR)。人类干扰导致沉积物的积聚减少,现有的保护活动在促进沉积物积聚方面不可能。其次,开发了一个综合的气候和湿地迁移模型,以评估通过将SEC,RSLR,气候区域,潮汐淹没,海拔和纬度纳入MATLAB中未来SLR的全球潮汐沼泽的弹性。该模型是在代表性浓度途径(RCP)2.6、4.5和8.5以及基于自然的人类适应方案下实施的。在RCP和基于自然的人类适应情景下,潮汐沼泽将在当前全球面积的53%-58%的占2100时,如果有能力的沉积物负载和住宿空间允许陆路迁移。如果维持当前的住宿空间,则可能可能存在23% - 30%的全球净损失。未来沼泽损失的热点主要在北美,澳大利亚和中国。对大多数SLR场景的预测可见沼泽地区在21世纪中期而不是中期的峰值。生态形态反馈会影响沉积物积累的效果,但不能纳入地球系统模型中。在增强潮汐沼泽对未来SLR的弹性方面强调了基于自然的适应性的重要性。
表和图表的列表表1:本研究中使用的麻雀粪便样品数量。原始计数是从每个站点收集的粪便样本数量。每个麻雀物种的数量是通过现场通过质量控制的样品数量。过滤计数是完整数据集中每个站点的粪便样本的最终数。图1:通过读取深度在每个麻雀粪便样品中观察到的ASV的丰富度的稀疏曲线。图2:观察到的ASV丰富度的稀疏曲线,用于总读数少于2,000的粪便样品。图3:用于比较羊膜麻雀的同胞和同种异体饮食的地点。同种异体位点被鉴定为一个主要物种,而两种物种相似的位点被分类为这些物种的同胞。仅显示收集弹药样品的位置。图4:发生的频率或存在猎物分类子的粪便样品百分比,在六种麻雀种类的班级水平上。图5:六种潮汐沼泽麻雀物种饮食中猎物类别的发生百分比。发生的百分比表示每个物种的每个猎物分类群中所有发生的粪便样品中所有发生的百分比。麻雀物种按降低盐沼泽的顺序排列:海边麻雀(SESP),盐玛斯麻雀(萨尔斯),尼尔森的麻雀(NESP),沼泽麻雀(SWSP),Song Sparrow(SOSP)和Savannah Sparrow(Savannah Sparrow(Savs)。仅显示了12个最常见的订单。图6:猎物分类群的平均相对阅读丰度(RRA)在班级六种潮汐沼泽麻雀的饮食中。rra表示每个粪便样品中猎物分类读的百分比,在每个物种的所有样品中平均。麻雀物种按降低盐沼泽的顺序排列:海边麻雀(SESP),盐玛斯麻雀(萨尔斯),尼尔森的麻雀(NESP),沼泽麻雀(SWSP),Song Sparrow(SOSP)和Savannah Sparrow(Savannah Sparrow(Savs)。图7:出现的频率,或存在猎物分类子的粪便样品百分比,在所有六种麻雀种类的订单水平上。
红树林在隔离有机碳中的重要作用是众所周知的,但是宏观潮汐红树林生态系统中有机碳的积累速率却很差。在这里,我们使用210个PB的日期来预示着来自亚马逊宏观宏观红树林的沉积物中的碳,营养和痕量金属积累的125年记录。我们发现,有机碳积累的速率范围为23.7至74.7 g 2年1(平均38 13.5 g m 2年1),显着低于红树林的全球平均值。这些低速率可能与沉积物晶粒大小和沉积物 - 驱动有机物氧化并减少这些高度动态的宏观潮汐森林中的碳库存的水接口工艺有关。总氮积累范围为1.4至5.1 g m 2年1(平均2.7 0.9 g m 2年1),磷从1.5到8.4 g m 2年(平均4.3 1.9 1.9 g m 2年1)。Trace metal accumulation rates (As, Pb, Cr, Cu, Mn, Ni, Zn, Hg, Bo, V, Co, Mo, S, and Ba) were also lower than other tropical mangrove forests globally, but trace metal in more recent sediments for Mn, As, Cu, and Hg were elevated, likely re fl ecting human footprint in the region since early the 20 th century.精确量化红树林生态系统中的碳积累率的能力对于缓解气候变化策略和全球碳偏移方案的实施至关重要。