从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要背景:关于转移性去势抵抗性前列腺癌 (mCRPC) 男性使用雄激素受体靶向药物 (ART) 阿比特龙和恩杂鲁胺治疗时间的临床实践数据很少且不一致。我们评估了 ART 治疗时间并研究了治疗时间的预测因素。材料和方法:使用 Kaplan - Meier 图和 Cox 回归评估了瑞典国家前列腺癌登记处 (NPCR) 子登记处患者概览前列腺癌 (PPC) 中 mCRPC 男性的 ART 治疗时间。为了评估 PPC 对治疗时间的代表性,与 NPCR 中在处方药登记处填写 ART 的所有男性进行了比较。结果:2015 年至 2019 年期间,PPC 中的 2038 名男性接受了 ART 治疗。未接受过化疗的男性中位治疗时间为阿比特龙 10.8 个月(95% 置信区间 9.1 – 13.1),恩杂鲁胺 14.1 个月(13.5 – 15.5)。使用多西他赛后,阿比特龙的治疗时间为 8.2 个月(6.5 – 12.4),恩杂鲁胺的治疗时间为 11.1 个月(9.8 – 12.6)。ART 治疗时间长的预测因素包括 ART 前 ADT 持续时间长、ART 开始时血清 PSA 水平低、无内脏转移、体能状态良好以及未曾使用过多西他赛。PPC 捕获了所有已开具 ART 处方的 NPCR 男性中的 2522/6337(40%)。根据处方药登记处填写的信息,PPC 男性接受 ART 治疗的时间中位数与 NPCR 所有男性相比略长,分别为 9.6 (9.1 – 10.3) 个月和 8.6 (6.3 – 9.1) 个月。结论:由于年龄较大、体能状态较差和合并症较多,临床实践中的治疗时间与已发表的 RCT 中的时间相似或更短。
大学 COVID-19 疫苗接种休假政策已不再有效。有关更多信息,请参阅大学 COVID-19 资源中心 (https://www.rochester.edu/coronavirus-update/)。
在精确的牲畜种植中,牛的个体识别对于为赋予动物福利,健康和生产力做出的决定提供了至关重要的。在文字中,存在可以读取耳罩的模型;但是,它们不容易携带到现实世界中的牛生产环境,并主要在静止图像上做出预测。我们提出了一个基于视频的牛耳牌阅读系统,称为deRmycow,该系统利用视频中的节奏特性来准确检测,跟踪和读取边缘设备上25 fps的牛耳标。对于视频中的每个帧,ReDmycow在两个步骤中发挥作用。1)标签检测:Yolov5s对象检测模型和NVIDIA DEEPSTREAM跟踪层检测并跟踪存在的标签。2)标签读数:小说whentoread mod-ule决定是读取每个标签,使用trba场景文本识别模型或使用从前框架上读取的读数。该系统是在边缘设备上实现的,即NVIDIA JETSON AGX ORIN或XAVIER,使其可移植到没有外部计算资源的牛生产环境中。要达到实时速度,请阅读 - MyCow仅在当前框架中读取检测到的标签,如果它认为在当前框架中明显改善决策时,它将获得更好的读数。理想情况下,这意味着即使标签被遮挡或模糊,也可以在视频中找到标签的最佳读数并存储在视频中。在真正的中西部奶牛场住房测试该系统时,9,000头母牛,雷米科(Demmycow)系统准确地阅读了96.1%的印刷耳廓,并证明了其现实世界中的商业潜力。devmycow为商业牛农场提供了知情的数据驱动决策流程的机会。
A. K教授。 Mohapatra Ankita Dr.A. K教授。Mohapatra Ankita Dr.
Wei等人,《经过思考链》提示在大语言模型中引起推理,Neurips 2022。nye等人,展示您的作品:与语言模型中间计算的刮擦程序,2021。
“中国航天科技集团是中国航天领域的主要承包商之一。它是一家大型国有企业,拥有许多研发设施和子公司。中国航天科技集团多年来一直参与由英国贸易投资署和中国商务部 (MofCOM) 组织的中英航天工作组,预计将成为最近成立的航天分工作组的主要参与者,该分工作组将于今年 7 月在英国首次举行会议。(格拉斯哥英国航天会议。)
研究领域(CSE):基于代理的建模和模拟、算法、身份验证和访问控制、认知建模 - 关系模式、计算几何、计算机架构、计算机网络、密码学和网络安全、云/SDN 安全、网络安全、网络物理系统、数据分析、电子系统设计自动化、分布式算法、EEG 数据分析、嵌入式系统、系统架构、医疗信息学、高性能计算、人机交互、图像处理和计算机视觉、智能控制、机器/深度学习、多目标优化、自然语言处理、安全和区块链、自组织和自组装系统、软计算、空间/时空/多元统计建模、环境应用的统计和机器学习模型、文本数据挖掘/信息检索、VR/AR、无线传感器系统、人机交互、无人机、高级密码学、人工智能驱动的入侵检测系统、基于深度学习的生物信息学和计算生物学、
Covid-19爆发使所有人感到惊讶。大流行在镇定和死亡方面一直是毁灭性的,并使经济停顿了(见Phan&Narayan,2020年)。大流行导致了无与伦比的政策反应 - 锁定,社会疏远和刺激套餐 - 揭开了全球(Iyke,2020b)。围绕这些政策回应的确定性是巨大的,因为政策制定者和其他经济因素不是反应是暂时的还是永久的,干预措施在多大程度上影响投资和消费活动,经济将需要多长时间的经济康复等等(请参阅Altig等,2020)。图1的面板A显示,除日本和印度以外,亚洲国家的EPU索引在Covid-19-demic期间经历了极端的向上波动。为了透视事物,图1的B小组表明,全球经济政策从来没有像目前那样确定,甚至甚至2007 - 2009年的全球金融危机也能够引起这种不太艰难的水平。我们发现大流行在中国和韩国向上引起的EPU的强烈经验支持,但在其他国家中则不太如此。对于日本和印度,我们发现Covid-19对EPU没有影响,这反映了图1中这些国家的EPU的中等模式。我们表明,我们的估计值在Covid-19 Pan DemIC的规格和度量方面都是可靠的。