I.简介基于v iSion的导航是下一代On-On-On-On-On-On-Os-andActivedEbrisredebremoval任务的关键技术。在这些情况下,指导和控制定律应采用相对的Chaser-Chaser-Toget姿势(即位置和态度)喂食,这可能会从单眼图像中方便地估算,因为这些传感器是简单,光线的,并且消耗了很少的功率。传统上,图像处理算法分为1)手工制作的特征[1,2]和2)基于深度学习的[3-14]。然而,前者受到较低鲁棒性的影响,对典型的空间图像特征(例如,信噪比低,严重和迅速变化的照明条件)和背景。神经网络(NNS)可以通过适当的培训克服此类弱点,但通常会导致高计算负担,这与典型的船上处理能力几乎不兼容。
财务时间序列是高度非线性的,它们的运动是不可预测的。人工神经网络(ANN)在财务预测中有足够的应用。ANN模型的性能主要取决于其培训。尽管基于梯度下降的方法对于ANN训练很常见,但它们有几个局限性。烟花算法(FWA)是一种最近开发的元疗法,它受到夜间烟花爆炸现象的启发,它提出了诸如更快的融合,并行性和找到全球最佳优势之类的特征。本章打算开发一个由FWA和ANN(FWANN)组成的混合模型,用于预测收盘价系列,交换系列和原油价格时间序列。将FWANN的适当性与基于PSO的ANN,GA-基于ANN,基于DE的ANN和MLP模型等模型进行了比较。四个性能指标,MAPE,NMSE,ARV和R2被视为评估的晴雨表。进行性能分析以显示FWANN的适用性和优越性。
庞迪切里大学,印度帕德切里摘要:随着暴力犯罪者(包括儿童性犯罪者)的累犯率令人震惊,对维护脆弱环境的高级安全措施的需求越来越紧迫。学校,育儿中心和其他高风险地区特别容易受到潜在威胁的影响,因此必须实施积极的解决方案,以确保儿童和员工的安全和福祉。在很大程度上依赖安全人员手动监控的传统监视系统正越来越多地证明实时识别和应对威胁的不足。人类的监督通常受到诸如延迟反应和判断错误之类的局限性,留下了关键的安全差距。我们建议的工作提供了一种新颖的视频监视系统,该系统使用DeepFaceNet,这是一种高度优化和模块化的深度学习模型,旨在克服这些困难。由于该技术主要旨在处理监视摄像机的实时视频供稿,因此它可以识别和检测具有犯罪背景的人的面孔,尤其是那些被归类为高风险罪犯的人。通过利用最新的面部识别技术,我们建议的系统提供了强大而全面的威胁检测解决方案。随着公共安全的改善,它还可以抑制犯罪行为,这有助于避免这种事件。该系统通过强调高精度,实时处理和可靠性来解决并确保安全和监视领域的更安全环境。索引术语:面部识别,深度学习,深度,监视,安全性。
摘要 - 场景的理解在机器人技术,自动化,增强现实和许多其他领域至关重要。为了完全完成此任务,一个自主代理必须推断感应场景的3D结构(要知道它的位置)及其内容(了解它看到的内容)。为了解决这两个任务,经过训练的深度神经网络,从立体声图像中推断出语义细分和深度通常是首选的选择。特别是,可以独立训练这两个任务的独立模型或端到端的端到端体系结构来解决语义立体声匹配。到目前为止,这两种解决方案都是不具备的,因为在前一种情况下需要两个正向通行证,或者由于后者中单个网络的复杂性,尽管共同解决这两种任务通常在准确性方面是有益的。在本文中,我们为实时语义立体声匹配提供了一个紧凑而轻巧的体系结构。我们的框架以多阶段的方式依赖于粗到实体的估计,允许:i)即使在嵌入式设备上也非常快速推断,并且与最先进的网络相比,准确性下降的准确性下降,ii)根据特定的应用程序要求,速度的贸易准确性。与独立任务相比,在高端GPU以及嵌入式Jetson TX2上确保语义立体声匹配的优越性,并突出了我们框架在任何硬件和任何应用程序上的多功能性。
气候紧急情况将影响全球社区,但影响不会平等分发。最大的风险,其中50%是亚洲和太平洋岛屿地区,包括斐济,斯里兰卡,菲律宾,日本和印度。4印度的经济调查说,印度是第七最脆弱的国家,2024年的93%的天数为高度气候事件,例如热浪,旋风,旋风和洪水。5能源,环境和水理事会(CEEW)的分析表明,印度四个地区中有三个是极端的事件热点,其中40%的地区表现出交换趋势,即传统上容易发生洪水的地区正在见证更频繁,更强烈的干旱,反之亦然。6
人们的安全,农业和生物多样性都受到与动物有关的威胁的严重威胁,例如野生动植物与车辆和牲畜入侵之间的碰撞。伤害,死亡,经济损失和对自然生态系统的干扰都是这些灾难的结果。由于这些事件变得越来越频繁,创造性的方法来识别和成功降低这些风险。在实时管理危害方面,诸如物理障碍和手动监控之类的传统技术通常不足。物联网(IoT)和深度学习的新发展提供了令人鼓舞的答案。卷积神经网络(CNN),尤其是使深度学习能够在包括保护区,农场和道路在内的各种环境中准确识别和分类动物。深度学习可用于训练模型以识别各种物种并预测其运动模式,从而使先发制人的行动能够阻止不幸和伤害。深度学习与物联网技术相结合,提高了系统的实时功能。可以通过摄像机,运动探测器和温度传感器等物联网设备的互联网进行可以不断监视动物活动,这些设备也可以引发瞬时反应,例如自动屏障或警报。 通过Blynk IoT等平台使这些系统的遥控和管理可行,该平台可以保证利益相关者可以及时收到通知并从任何位置采取必要的步骤。 这个物联网和深度学习组合为危险动物检测提供了完整的解决方案。可以不断监视动物活动,这些设备也可以引发瞬时反应,例如自动屏障或警报。通过Blynk IoT等平台使这些系统的遥控和管理可行,该平台可以保证利益相关者可以及时收到通知并从任何位置采取必要的步骤。这个物联网和深度学习组合为危险动物检测提供了完整的解决方案。通过降低事故的数量,它不仅可以提高安全性,而且还可以通过使牛摆脱困境和保护作物来帮助农业。此外,它对于野生动植物保护至关重要,因为它在受保护区域提供了非侵入性监测。对于人和野生动植物,这种方法通过提供可扩展,有效和实时系统来帮助创造更安全和可持续的环境。
Ramdan 08:00-08:35 08:40-09:15 09:20-09:55 10:00-10:35 10:40 10:40 01:15 01:20-01:20-01:55 <
为了克服这一挑战,研究人员使用了Terahertz Light脉冲,这种光脉冲频率远低于可见光。这些脉冲会导致电子在分子和可以操纵单个分子的专用显微镜的金属尖端之间移动,从而使团队可以去除或添加电子。这种新方法提供了一种不仅以可控方式控制激子的方法,既快速又精确,而且还可以控制其他重要的分子状态,这些状态对于化学反应,能量传递和许多其他过程至关重要。该团队还证明了人眼看不见的Terahertz Light可以在分子中转化为可见光,从而揭示了一种新颖的方式,可以通过分子能量变化将一种类型的光转化为另一种光。