1. 简介 ADMIRA 15 项目是一项旨在通过实验将粒子物理学带入学校的计划,目的是通过使用由欧洲核子研究中心 (CERN) 的 Medipix2 合作组织设计的 Timepix 探测器,培养学生的科学天赋。这项活动始于 2017 年多位教育、研究和创新领域的专业人士的合作,并逐渐巩固为一个在方法和结果方面具有独特特征的教育计划。本文从物理教学的角度解释了该计划的重要性、方法的特点和特殊性、它使用的工具以及它提出的活动。最后,本文介绍了一些数据和该项目对参与学校的影响结果,以鼓励在欧洲其他地区甚至其他地区实施类似的举措。
第一个 Medipix 芯片于 20 世纪 90 年代中期开发,旨在实现对大量像素矩阵进行单光子计数。在随后的 20 年中,从最初的努力中发展出了两个芯片系列。Medipix 光子计数芯片系列包括 Medipix、Medipix2 和 Medipix3。第四代芯片 Medipix4 正在开发中。Timepix 芯片最初更侧重于单粒子检测,该系列包括 Timepix、最新的 Timepix2 芯片(在本期特刊中介绍)和 Timepix3。第四代 Timepix4 也在开发中,第一个版本将于 2019 年生产。本文旨在简要介绍 Medipix 系列的各个成员,并提供文献中已有的更详细描述的参考。
摘要 我们概述了目前国际空间站 (ISS) 上两个最重要的辐射探测系统 ISS-RAD 和 Timepix。ISS-RAD 是一个单一的大型装置,能够探测带电和中性高能粒子。在空间站运行的前三年半中,ISS-RAD 大部分时间都定期转移到不同的模块,包括 USLab、Columbus、JEM、Node2 和 Node3。相比之下,基于 Timepix 的探测器小得多,部署在空间站周围的多个位置。这些装置的第一代称为 REM,即辐射环境监测器。第二代装置最近已部署,称为 REM-2 装置。我们将简要介绍这些系统中使用的技术及其功能。
更多信息:Poikela,TimePix等。“ timePix3:一个65K频道混合像素读数芯片,带有TOA/TOT和稀疏读数。”仪器杂志9.05(2014):C05013。
已完成 9 次任务,未来六个月将执行 2 次任务,已实现 6 次任务,迄今为止已在太空中拍摄了 25 多个 Timepix 图像。CERN 的技术转让十分成功,为过去 10 年的 NASA 任务提供了动力,并且很可能持续下去
人类空间探索的新阶段即将到来。从国际空间站到NASA的猎户座航天器,TimePix已成为几个人类太空飞行任务的一部分。由CERN托管Medipix2协作开发,TimePix检测器非常小但功能强大。在过去的十年中,它们已用于各种空间应用中:从开放空间中辐射和宇宙射线的可视化到宇航员的可视化。因此,他们在国际空间站上,并被委托用于NASA的月球勘探计划Artemis。芯片的技术类似于在CERN的LHC实验中用于跟踪粒子轨迹的技术。它能够测量电离α,β和伽马辐射以及重离子;它还能够表征单个电离颗粒的痕迹,以便推导类型和能量。哪些太空任务?
在CERN,我们致力于分享通过尖端研究获得的知识,专业知识和技术。 与我们的工业,创新和研究合作伙伴的合作在对我们的成员国,同学及其他地区产生积极的社会影响方面至关重要。 2022标志着几个专注于可持续性的项目的启动。 CERN的环境应用创新计划 CIPEA引起了组织内部的丰富想法,反映了CERN社区致力于应对环境挑战的承诺。 根据提出的提案,现在正在开发八个。 此外,我们与空中客车公司联合起来,为下一代飞机开发创新的清洁能源技术。 在医疗保健中,CERN,CHUV和THERYQ在基于CERN的CLIC(紧凑型线性对撞机)技术的情况下,使用非常高能的电子签署了一项协议,以开发革命性的闪光放射疗法设备,以治疗抗癌药对常规治疗的抗性。 CERN在高级仪器方面的专业知识也使其成为太空,而Celesta MicrosaTellite于7月在ESA火箭上发射了用于辐射监测,以及在Artemis 1 NASA任务上推出的TimePix芯片。 基于开放科学的基本原则,CERN的知识转移到工业和社会是其核心使命的组成部分,旨在推进科学和技术的前沿,以使人类受益。 目的是使我们的知识产权广泛可用,并通过仔细的专利,IP政策和管理来监视其分布。在CERN,我们致力于分享通过尖端研究获得的知识,专业知识和技术。与我们的工业,创新和研究合作伙伴的合作在对我们的成员国,同学及其他地区产生积极的社会影响方面至关重要。2022标志着几个专注于可持续性的项目的启动。CERN的环境应用创新计划 CIPEA引起了组织内部的丰富想法,反映了CERN社区致力于应对环境挑战的承诺。 根据提出的提案,现在正在开发八个。 此外,我们与空中客车公司联合起来,为下一代飞机开发创新的清洁能源技术。 在医疗保健中,CERN,CHUV和THERYQ在基于CERN的CLIC(紧凑型线性对撞机)技术的情况下,使用非常高能的电子签署了一项协议,以开发革命性的闪光放射疗法设备,以治疗抗癌药对常规治疗的抗性。 CERN在高级仪器方面的专业知识也使其成为太空,而Celesta MicrosaTellite于7月在ESA火箭上发射了用于辐射监测,以及在Artemis 1 NASA任务上推出的TimePix芯片。 基于开放科学的基本原则,CERN的知识转移到工业和社会是其核心使命的组成部分,旨在推进科学和技术的前沿,以使人类受益。 目的是使我们的知识产权广泛可用,并通过仔细的专利,IP政策和管理来监视其分布。CIPEA引起了组织内部的丰富想法,反映了CERN社区致力于应对环境挑战的承诺。根据提出的提案,现在正在开发八个。此外,我们与空中客车公司联合起来,为下一代飞机开发创新的清洁能源技术。在医疗保健中,CERN,CHUV和THERYQ在基于CERN的CLIC(紧凑型线性对撞机)技术的情况下,使用非常高能的电子签署了一项协议,以开发革命性的闪光放射疗法设备,以治疗抗癌药对常规治疗的抗性。CERN在高级仪器方面的专业知识也使其成为太空,而Celesta MicrosaTellite于7月在ESA火箭上发射了用于辐射监测,以及在Artemis 1 NASA任务上推出的TimePix芯片。基于开放科学的基本原则,CERN的知识转移到工业和社会是其核心使命的组成部分,旨在推进科学和技术的前沿,以使人类受益。目的是使我们的知识产权广泛可用,并通过仔细的专利,IP政策和管理来监视其分布。我们旨在通过各种渠道向工业和机构利益相关者最大限度地传播CERN技术和专业知识:开源,专有许可,研发协作和咨询协议。CERN的知识转移活动并非旨在赚取可观的利润;任何产生的收入均用于支付技术发展的成本,并为进一步的创新提供种子资金。我们期待与我们的外部合作伙伴合作继续这项重要工作。
本介绍性文章将早期半导体检测器向现代RA Diation Imaging Instruments的演变(现在具有数百万个信号处理细胞)的发展方面,利用了硅纳米技术的潜力。MEDIPIX和TIMEPIX组件是此演变中的主要移动器之一。可以使用单个电离粒子和光子检测矩阵中检测矩阵中的影响来研究这些基本量子本身,或者允许人们可视化辐射下对象的各种特征。x-射线成像可能是后者最常用的模态,新成像器可以处理每个事件x - 光子以获取具有有关对象的结构和组成的其他信息的图像。可以利用能量特异性X射线吸收来成像原子分布。出现了无数其他应用程序。为例,在分子光谱学中,每个像素中的亚纳秒时序可以实时传递,以单分子的飞行时间来实时映射样品的分子组成,与经典的凝胶电泳相比,革命是革命。参考文献和一些个人印象可在超过50年的时间内照亮辐射检测和成像。推断和对未来发展的狂野猜测总结了这篇文章。