引言器官,干细胞和组织捐赠是20世纪最大的医学进步之一。他们对许多人和人类的总体和人类的生活质量显着延长了预期寿命和改善的生活质量。捐赠和移植实践受到平等和照顾义务等几种道德原则的管辖。但是,器官,干细胞和组织捐赠仍然面临四个主要障碍:捐赠短缺,不道德的做法,可访问性差异以及医学生和临床医生的不合格医学教育系统。可用细胞,组织和器官的短缺是由于缺乏人口同意捐赠而引起的。不安全的捐赠程序可以归因于医疗保健专业人员和效率低下的捐赠系统的低护理质量。不道德的捐赠实践通常会忽略捐赠的自愿性质,并沉淀出可用器官和组织的不平等分配。
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
诱导的多能干细胞(IPSC)源自使用四个Yamanaka转录因子对成年体细胞的重编程。自发现以来,干细胞(SC)领域就达到了重要的里程碑,并在疾病建模,药物发现和再生医学领域开设了多个门户。同时,聚类的定期插入短的短质体重复序列(CRISPR) - 相关蛋白9(CRISPR-CAS9)彻底改变了基因组工程的范围,从而允许产生遗传上修改的细胞系,并实现精确的基因组重组或随机插入/插入/删除的应用程序,用于使用WIREDIRESS,WIREDIRESS。心血管疾病代表着不断增加的社会问题,对潜在的细胞和分子机制的了解有限。IPSC分化为多种细胞类型与CRISPR-CAS9技术相结合的能力可以实现对潜在疗法的病理生理机制或药物筛查的系统研究。此外,这些技术可以通过调节靶向蛋白的表达或抑制来提供心血管组织工程(TE)方法的细胞平台,从而为设计新的细胞系和/或精细仿生生物仿生支架提供了可能性。本综述将重点介绍IPSC,CRISPR-CAS9的应用以及其在心血管TE领域的结合。特别是,将讨论此类技术的临床转换性,从疾病建模到药物筛查和TE应用。
RESULTS ........................................................................................................................................3
1零件(生物)聚合物:聚合物在医疗1应用中的高级应用,包括组织工程的支架,细胞1封装的聚合物,热响应材料,制造,生物制作和1个物理特性。2关于生物陶瓷,生物相容性和组织工程的部分:化学,物理1和生物聚合物基材料的机械性能。1生物相容性,与细胞和身体的相互作用。3关于生物特征的一部分:生物特征的化学,物理和机械性能,1个腐蚀和在生物医学领域的应用。基本的生物量表将为1个解释,但是主要重点将放在先进的处理上,包括3d 1打印技术和高级生物识别符,例如Shape-Memory Alloys,Bio-1可吸收金属等。
1。神经病学系,加州大学洛杉矶分校,洛杉矶,加利福尼亚2。基因组健康研究所,伊坎医学院位于纽约,纽约州西奈山3. 分子,细胞和发育生物学系,加州大学洛杉矶分校;洛杉矶,加利福尼亚4。 化学,生命科学和环境可持续性系,意大利帕尔马大学5。 澳大利亚布里斯班昆士兰州大学分子生物学研究所6。 心血管研究所,加州大学旧金山UCSF 7。 系统和合成生物学,基因组调节中心,西班牙巴塞罗那8。 内科学系III,维也纳医科大学风湿病学系,奥地利,奥地利9。 马萨诸塞州波士顿的达纳 - 法伯癌症研究所医学肿瘤学系10. 计算和系统生物学跨部门计划,加州大学洛杉矶分校,加利福尼亚州洛杉矶11。 澳大利亚生物工程和纳米技术学院,澳大利亚布里斯班昆士兰州大学12。 皇家布里斯班和妇女医院神经病学系,澳大利亚昆士兰州布里斯班, 生物医学科学学院,澳大利亚布里斯班昆士兰州大学医学院 昆士兰州脑研究所,昆士兰州昆士兰州,布里斯班,澳大利亚15。 Mater公立医院,澳大利亚布里斯班16。 神经病学系,加州大学旧金山,加州大学,加利福尼亚州17。 加利福尼亚大学洛杉矶分校的人类遗传学系,加利福尼亚州洛杉矶基因组健康研究所,伊坎医学院位于纽约,纽约州西奈山3.分子,细胞和发育生物学系,加州大学洛杉矶分校;洛杉矶,加利福尼亚4。化学,生命科学和环境可持续性系,意大利帕尔马大学5。澳大利亚布里斯班昆士兰州大学分子生物学研究所6。心血管研究所,加州大学旧金山UCSF 7。 系统和合成生物学,基因组调节中心,西班牙巴塞罗那8。 内科学系III,维也纳医科大学风湿病学系,奥地利,奥地利9。 马萨诸塞州波士顿的达纳 - 法伯癌症研究所医学肿瘤学系10. 计算和系统生物学跨部门计划,加州大学洛杉矶分校,加利福尼亚州洛杉矶11。 澳大利亚生物工程和纳米技术学院,澳大利亚布里斯班昆士兰州大学12。 皇家布里斯班和妇女医院神经病学系,澳大利亚昆士兰州布里斯班, 生物医学科学学院,澳大利亚布里斯班昆士兰州大学医学院 昆士兰州脑研究所,昆士兰州昆士兰州,布里斯班,澳大利亚15。 Mater公立医院,澳大利亚布里斯班16。 神经病学系,加州大学旧金山,加州大学,加利福尼亚州17。 加利福尼亚大学洛杉矶分校的人类遗传学系,加利福尼亚州洛杉矶心血管研究所,加州大学旧金山UCSF 7。系统和合成生物学,基因组调节中心,西班牙巴塞罗那8。内科学系III,维也纳医科大学风湿病学系,奥地利,奥地利9。马萨诸塞州波士顿的达纳 - 法伯癌症研究所医学肿瘤学系10.计算和系统生物学跨部门计划,加州大学洛杉矶分校,加利福尼亚州洛杉矶11。澳大利亚生物工程和纳米技术学院,澳大利亚布里斯班昆士兰州大学12。皇家布里斯班和妇女医院神经病学系,澳大利亚昆士兰州布里斯班,生物医学科学学院,澳大利亚布里斯班昆士兰州大学医学院昆士兰州脑研究所,昆士兰州昆士兰州,布里斯班,澳大利亚15。Mater公立医院,澳大利亚布里斯班16。神经病学系,加州大学旧金山,加州大学,加利福尼亚州17。加利福尼亚大学洛杉矶分校的人类遗传学系,加利福尼亚州洛杉矶
©韩国组织工程和再生医学协会2020年。这是在组织工程和再生医学上发表的文章的电子版本,2020,17(3),pp。253-269。Acta Mechanica Sinia可在线获得:http://link.springer.com/带有文章的开放网址。
胚胎发生会整合形态发生 - 协调的细胞运动 - 具有形态学模式和细胞差异。虽然在很大程度上进行了独立研究,但形态发生和模式通常在早期胚胎中同时展开。然而,由于大多数模式形成模型都假设静态组织,细胞运动的影响仍不清楚。我们通过在动态组织中开发一个数学框架来解决这一差距,从而重新设计了细胞参考框架中的对流反应扩散模型,这是信号解释和命运决策最自然的。该框架(i)阐明了形态发生如何介导形态的传输和分隔:多细胞吸引力增强了细胞 - 细胞扩散转运,而驱虫剂则充当障碍,影响细胞命运诱导和分支。(ii)它正式化了动态组织中的细胞 - 细胞信号传导范围,解除形态发生运动并识别哪些细胞可以传达。(iii)它提供了两个非二维数字(通常与p的数字不同),以评估形态上的何时何地与构图相关。(iv)它阐明了细胞密度动力学在图案中的生成作用。我们将此框架应用于经典的图案模型,形态发生基序和鸟类胃胃数据。广义,我们的工作提供了一种定量的观点,可以使自然和合成胚胎中的动态组织合理化。
面部软组织(FST)的具有里程碑意义的定位是对人体面部的3D形态分析的基本步骤,这对于面部畸形相关疾病的诊断和治疗非常重要。但是,几乎没有关于基于深度学习的3D扫描图像的地标定位的研究。由于非欧盟数据结构,无法直接使用基于2D图像的方法。在本文中,我们提出了一个端到端的学习框架,以自动将28个地标在3DMD扫描中定位,称为FST-NET。我们的方法从纹理图像和网格模型中提取特征。3DMD扫描的新纹理映射是通过投影对融合纹理和结构特征的投影而生成的。使用双分支网络集成变压器,以预测从粗到细的地标热图。提出了基于概率距离和热图预测的局部协调回归模块,以计算具有里程碑意义的协调。我们从诊所收集和注释300 3DMD面部扫描以评估我们的模型。实验表明,该模型的平均定位误差为1.204mm(临床上可接受的精度范围为1.5 mm),正确的地标检测率等于70.89%。我们的模型超过了网格模型上地标定位的当前最新深度学习方法。