摘要 通过使用针对肝脏(连接蛋白 26 和 32)和心脏(连接蛋白 43)间隙连接蛋白的抗体,我们已将免疫反应性定位到成年啮齿动物脑部冷冻切片中的特定细胞类型。在少突胶质细胞和一些神经元中发现了连接蛋白 32 反应性,而对连接蛋白 26 和 43 的反应性则定位到软脑膜细胞、室管膜细胞和松果体。星形胶质细胞中也发生了对连接蛋白 43 抗体的免疫反应。此外,在胚胎和出生后脑组织成熟过程中,间隙连接蛋白的表达存在差异。连接蛋白 43 和 26 在胚胎脑部的神经上皮中占主导地位,而连接蛋白 32 几乎不存在。出生后 3 至 6 周,连接蛋白 26 在很大程度上从未成熟的脑部中消失;这一时间过程与连接蛋白 32 表达的增加相对应。连接蛋白 43 的表达在整个胚胎和出生后发育过程中保持较高水平。这些发现表明,大脑中的缝隙连接表达是多种多样的,特定细胞类型表达不同的连接蛋白;这种细胞特异性分布可能意味着这些细胞间通道在不同位置和发育阶段的功能存在差异。
• 核心的具体目标是: Ø 通过正式的教育充实计划和一对一互动,就评估肌肉骨骼组织结构和组成的各种方法的能力、优点和缺点提供指导和培训。 Ø 为肌肉骨骼组织的组织学和组织形态学测定提供专业知识和服务。 Ø 开发新的组织学技术,这些技术将适用于肌肉骨骼研究。 Ø 为新项目和合作的开发提供资金,并为研究人员开发初步和/或可行性数据。
胚胎发生会整合形态发生 - 协调的细胞运动 - 具有形态学模式和细胞差异。虽然在很大程度上进行了独立研究,但形态发生和模式通常在早期胚胎中同时展开。然而,由于大多数模式形成模型都假设静态组织,细胞运动的影响仍不清楚。我们通过在动态组织中开发一个数学框架来解决这一差距,从而重新设计了细胞参考框架中的对流反应扩散模型,这是信号解释和命运决策最自然的。该框架(i)阐明了形态发生如何介导形态的传输和分隔:多细胞吸引力增强了细胞 - 细胞扩散转运,而驱虫剂则充当障碍,影响细胞命运诱导和分支。(ii)它正式化了动态组织中的细胞 - 细胞信号传导范围,解除形态发生运动并识别哪些细胞可以传达。(iii)它提供了两个非二维数字(通常与p的数字不同),以评估形态上的何时何地与构图相关。(iv)它阐明了细胞密度动力学在图案中的生成作用。我们将此框架应用于经典的图案模型,形态发生基序和鸟类胃胃数据。广义,我们的工作提供了一种定量的观点,可以使自然和合成胚胎中的动态组织合理化。
兽医考虑抗菌管理,以保持抗菌药物的有效性和可用性。3 抗菌耐药性的出现促使人们研究替代或辅助治疗策略以减少抗菌药物的使用,包括再生疗法,如基于间充质基质细胞 (MSC) 的治疗和血小板裂解物。4–8 MSCs 具有固有的抗菌和免疫调节特性,通过抗菌肽和细胞因子分泌来招募单核细胞/巨噬细胞和中性粒细胞。9 –23 该研究小组和其他研究小组先前的研究表明,这些特性可以通过在体内给药之前用 Toll 样 (TLR) 和 Nod 样受体配体体外调节 MSCs 来增强,6、7、24、25 导致对细菌生长、中性粒细胞细菌吞噬作用和免疫调节细胞因子分泌的直接抑制增加,这在诱发啮齿动物金黄色葡萄球菌生物膜和犬类自然感染模型中均得到证实。8 这些发现鼓励进一步研究大型动物(马)耐甲氧西林金黄色葡萄球菌化脓性关节炎模型中的免疫调节细胞疗法。5 马自然发生的脓毒性关节炎的发展已得到充分证实,发生在穿透性创伤、滑膜内注射、关节镜检查或小马驹的血源性败血症之后。26–30 此外,马临床前模型对于患有关节感染的人类具有转化意义,因为与许多其他实验室物种相比,马在软骨厚度、关节负荷力和关节体积方面与人类更相似。31 我们之前证明,与仅用万古霉素 (VAN) 治疗关节相比,用 TLR-3 激动剂聚肌苷酸:聚胞苷酸 (pIC) 加万古霉素 (TLR-MSC-VAN) 激活的 MSCs 治疗脓毒症关节可显著降低滑液和滑膜中的细菌数量以及滑液中的促炎细胞因子 IL-18 和 IL-6。5 重要的是,在接受 TLR-MSC-VAN 治疗的马中,因疼痛和炎症而导致的跛行明显减少。重复 IA 注射在临床上耐受性良好,表明这种治疗方法可以在临床实践中安全实施。报告的结果表明,有必要进一步研究免疫调节细胞疗法,以改善抗菌素耐药性感染的治疗。询问然而,迄今为止,这项工作的一个局限性是,TLR-MSC 疗法在马关节体内发挥作用的作用机制尚未完全阐明,包括评估接受和未接受 MSC 疗法治疗的滑膜组织中与免疫细胞浸润相关的基因表达谱。因此,我们进行了额外的研究,利用最近推出的 Nanostring 基因表达技术,通过一个旨在评估马免疫和软骨反应的靶向面板,从机制上研究了之前报道的 TLR-MSC 疗法在马脓毒性关节炎模型中的临床效果。
该课程的目的是使学生能够深入且全面地了解胚胎的概念和发展以及干扰如何导致疾病的事件,以及对分化细胞如何配备如何支持特定组织功能的详细理解。总体而言,总体而言,学生将在课程结束时能够:•描述配子形成的过程,并将减数分裂事件与胚胎中的染色体异常相关联,概述•在胚胎开发的第一周概述事件,并在胚胎开发的第一周中进行相关的临床应用,并讨论相关的临床应用•解释额外的临床范围•描述较早的临时性•描述较早的临时性••描述较早的临时性•对转换的临时性•以下对心血管,呼吸,消化,泌尿生殖器,神经和肌肉骨骼系统的结果:o简要概述相关的发育事件并与
植物血管组织对于在整个植物体内的水,未含量和多种信号分子的长距离运输至关重要,因此对于植物的生长和发育至关重要。血管组织的复杂发展由整合内源性和环境线索的专用干细胞的独特种群策划。此视图总结了我们当前对血管相关干细胞生物学和血管组织分化的理解。我们介绍了管理血管干细胞维持和命运确定的分子和细胞机制,并突出了内在提示和外部提示之间的相互作用。在这种情况下,我们强调了术语因子,激素信号传导和表观遗传修饰的作用。我们还讨论了新兴技术和与血管组织相关的细胞类型的大量曲目,这些细胞类型有可能为细胞专业化和对不同生态壁球的解剖学适应提供前所未有的见解。
通过出现高通量抗体分析和测序方法,人类细胞的分子构建块已越来越多地映射到大型项目中。这些转变努力在解决许多人类细胞中蛋白质的表达水平和空间位置方面表现出了显着的进步。本论文旨在表征人类生殖组织,睾丸和输卵管(FT)的单细胞水平上的空间蛋白表达,并研究如何在非小细胞肺癌(NSCLC)中重新表达的睾丸蛋白如何影响免疫微环境。在纸I中,睾丸中有500多种RNA表达水平升高的蛋白在具有免疫组织化学(IHC)的八种不同的细胞类型中进行了分析。在精子发生的各个阶段,在细胞类型的水平上定位了几种特征性较差的蛋白质,即所谓的“缺失蛋白质”,从而提供了对其可能功能的新见解。在论文II中,通过组合单细胞转录组学和多重IHC来创建人类精子发生的时空图。高通量图像分析确定了近500种蛋白质的细胞状态特异性蛋白表达。通过检查RNA和蛋白质相关动力学,我们强调了人类睾丸的复杂时空景观。这些蛋白质是功能研究的靶标。在论文III中,IHC介绍了基于RNA水平升高的FT中升高的蛋白质编码基因,大多数蛋白质在功能上与纤毛运动有关,这是创建对受精至关重要的管状流动所必需的机制。,大多数是纤毛细胞独有的,其中包括以前在纤毛中未描述的几种蛋白质。在纸IV中,IHC在300多名免疫表型NSCLC患者中以IHC为特征。 ctas通常在睾丸和港口免疫原性中表达,由于NSCLC中异常表达而可能用作治疗靶标。 CTA与免疫谱有关,例如巨噬细胞和浆细胞浸润,可能表明原位免疫原性作用。 这些关联可以作为潜在的免疫疗法靶标进行研究和利用。 本论文在单细胞分辨率下定义了生殖组织的空间蛋白质组,并鉴定了许多蛋白质的蛋白质,并且具有先前未知功能的蛋白质。 在分子水平上绘制组织特异性细胞多样性的综合方法表明,将RNA和蛋白质检测方法结合在一起。 论文开发了新兴方法,例如多重染色和生物图像分析,这对大规模努力有希望。 这项工作显着有助于生殖组织的细胞图中,历史上没有得到充分研究。在纸IV中,IHC在300多名免疫表型NSCLC患者中以IHC为特征。ctas通常在睾丸和港口免疫原性中表达,由于NSCLC中异常表达而可能用作治疗靶标。CTA与免疫谱有关,例如巨噬细胞和浆细胞浸润,可能表明原位免疫原性作用。这些关联可以作为潜在的免疫疗法靶标进行研究和利用。本论文在单细胞分辨率下定义了生殖组织的空间蛋白质组,并鉴定了许多蛋白质的蛋白质,并且具有先前未知功能的蛋白质。在分子水平上绘制组织特异性细胞多样性的综合方法表明,将RNA和蛋白质检测方法结合在一起。论文开发了新兴方法,例如多重染色和生物图像分析,这对大规模努力有希望。这项工作显着有助于生殖组织的细胞图中,历史上没有得到充分研究。
当我们使用商业精子吸管进行萃取时,我们并不总是知道这些吸管的组成,所含的材料量,稀释剂的性质和所使用的防腐剂。这就是为什么有时需要使用几种吸管获得足够的测序材料的原因。有时也是明智的做法(请参见步骤3),以消除稀释剂和防腐剂中的污染物。