CCGDA 的使用是一个相对较新的概念,已经在实时战略关卡设计(Liapis、Yannakakis 和 Togelius 2013)(图 1)、超级马里奥世界(Guzdial 等人 2017)和众包谜题(Charity、Khalifa 和 Togelius 2020)中进行了初步实验。虽然这些早期原型系统证明了 AI 游戏设计工具的可行性,但对此类系统设计的原则和惯例的研究很少。我们的研究将调查在设计有效的 CCGDA 时应考虑的不同 AI 技术、游戏启发式方法和交互策略。我们的研究将使用数字纸牌游戏(例如炉石传说)作为研究平台,因为其中一些因素使它们在 AI 研究中很受欢迎(Hoover 等人 2020),包括:
第一台数字计算机是在 20 世纪 40 年代末或 50 年代初开发的,具体取决于您对计算机的确切定义,它们立即被用于玩游戏。这位热切的发明家(和玩家)正是计算机科学和人工智能的创始人之一艾伦·图灵(Togelius,2019 年)。人工智能是视频游戏中的基本概念之一。它的作用与叙事、艺术、图形、音频和任何其他元素一样重要。AI 不仅决定了游戏中可扩展的难度或与其他角色/环境的交互,还决定了沉浸感、适应性和响应性。糟糕的 AI 实现会破坏沉浸感,而具有良好 AI 机制的游戏将进一步增强整个游戏体验。自从人工智能诞生以来,游戏一直在帮助 AI 研究取得进展。游戏不仅为 AI 提出了有趣而复杂的问题(例如,玩好游戏);它们还为用户(人甚至机器!)提供了创造力和表达的画布。因此,可以说,游戏是一个罕见的领域,科学(解决问题)与艺术和互动相遇:这些因素使游戏成为 AI 研究的独特和最受欢迎的领域。但不仅仅是 AI 通过游戏得到发展;游戏也通过 AI 研究得到发展(Yannakakis & Togelius,2018)。视频游戏中的人工智能可以是确定性的,也可以是不确定的。确定性 AI 广泛应用于游戏行业,其中不确定性最低。不确定 AI 具有一定程度的不确定性,并且由于从用户交互中学习而更具适应性和响应性。
Browne, C. (2011)。进化游戏设计。doi: 10.1007/978-1-4471-2179-4 Neller, T. W. (2016 年 12 月)。AI 教育:志趣相投。AI Matters,2 (4),7–8。摘自 https://doi.org/10 .1145/3008665.3008668 doi: 10 .1145/3008665.3008668 Neller, T. W.、Malec, M.、Presser, C. G. M. 和 Jacobs, F. (2014)。Fowl Play 纸牌游戏的最佳、近似最佳和公平游戏。在 H. J. van den Herik、H. Iida 和 A. Plaat(编辑)中。),计算机和游戏(第233-243 页)。Cham:Springer International Publishing。Neller,T. W.,& Ziegler,D.(2019 年 7 月)。计算机生成 Birds of a Feather 谜题。AAAI 人工智能会议论文集,33 (01),9693-9699。取自 https://ojs.aaai.org/index .php/AAAI/article/view/5035 doi: 10.1609/aaai.v33i01.33019693 Russell, S., & Norvig, P. (2020)。人工智能:一种现代方法(第 4 版)。Pearson。Shaker, N., Togelius, J., & Nelson, M. J.(2016)。游戏中的程序内容生成。Springer。
类似于Alphastar [3]中采用的方法,这项研究强调了实时适应性和决策。尽管取得了重大进步,但挑战仍在处理高维输入,设计有效的奖励系统以及在动态场景中确保稳健的性能[4]。本研究通过实施一个模块化框架来解决这些问题,该框架将有效的数据预处理,可扩展体系结构和迭代培训策略集成在一起。2。文献调查加强学习(RL)已确立自己的强大方法,用于开发能够在动态和高维环境中运行的智能代理。其在多人游戏中的应用引起了重大的研究兴趣,从而在自适应策略和强大的决策框架方面取得了进步。Togelius和Yannakakis(2017)强调了深度强化学习(DRL)对通用视频游戏AI的潜力,强调了环境界面的重要性,在这些界面中,代理可以感知国家,采取行动并根据反馈来优化决策。这种方法已被证明有效地开发了能够响应复杂游戏机制的适应性代理。同样,Vinyals等人。(2019)展示了DRL在Starcraft II中的功能,在那里,代理商学会了通过广泛的
简介在娱乐领域,创建独特、引人注目且高质量的资产既昂贵又耗时,并且需要来自不同专业领域的越来越多的知识和技能。尽管如此,观众对资产质量的期望却不断增长。为了满足这些需求,大公司通常会聘请大型专家团队;相比之下,小型开发商往往会牺牲上述一些理想的资产属性:在竞争激烈的市场中,这是一个冒险的举动。内容生成方法和技术的最新进展使得其他替代方案能够满足这些需求(程序内容生成、机器学习、深度学习、强化学习等)(Shaker、Togelius 和 Nelson 2016;Khalifa 等人 2020;Summerville 等人 2017;Gravina 等人 2019;Kingma 和 Welling 2013;Karras、Laine 和 Aila 2018)。这些技术可以快速分析和创建高质量的内容(视觉效果、音频、关卡甚至游戏)(Rebouc¸as Serpa 和 Formico Rodrigues 2019;Torrado 等人 2019;Guzdial 和 Riedl 2018;Hoover 等人 2015;Cook、Colton 和 Gow 2017)。《全境封锁 2》(Ubisoft 2019)和《无主之地》系列(Gearbox-Software 2020)等游戏采用了其中一些方法。然而,它们在游戏行业的应用并不广泛。此外,某些类型的内容(如关卡)比其他类型的内容(如视觉效果)更有影响力,而视觉效果正是我感兴趣的内容。我建议