自1950年代以来对融合的投资,英国政府一直投资于融合能源1。从历史上看,融合实验的高风险意味着融合研究的投资主要来自公共部门。在过去的20年中,这种余额发生了变化;随着研究的进展,私人投资对融合技术的投资有所提高,私人投资的价值几乎翻倍,从2016 - 2020年之间的15亿美元增加到2021年的44.4亿美元。这项投资导致了几个技术领域的进步,包括使用“ Tokamak”设备(使用磁场限制被加热至非常高温的氢气)进行融合的高温超导磁铁,以及实现融合点火点火(融合反应比对目标产生更多的能量)3 4 4 5。
聚变能的商业化正在加速。迄今为止,该行业已吸引超过 60 亿美元的国际投资,这一数字比 2022 年多出 14 亿美元 3 。世界各地的公共和私营部门聚变组织都在设计原型聚变发电厂,一些组织计划在 2020 年前开始建设。如果英国想要在私营部门聚变市场中占据很大份额,就需要明确规划流程和框架。这不仅对私营聚变公司如此,对政府的原型聚变发电厂计划 STEP(球形托卡马克发电厂)、投资者、当地社区和所有潜在开发商也同样如此。为了提供清晰度并支持不断发展的聚变行业,政府正在发布其为聚变能指定新的国家政策声明(NPS)的提案。
• 2000 年夏天,我是 SULI/NUF 的学生。 • 那个夏天,我的研究项目是麻省理工学院的磁约束聚变(MCF)托卡马克装置。--低密度,长时间尺度 • 我还在劳伦斯利弗莫尔国家实验室(LLNL)度过了两个夏天,研究间接驱动惯性约束聚变(ICF)。--高密度,短时间尺度 • 被聚变“虫”咬了之后,我去了普林斯顿大学读研究生,并在 PPPL 有一间办公室。 • 我的论文研究方向是 ICF 的一个子领域,称为重离子聚变(用强带电粒子束取代激光)。 • 我研究生涯的总体目标是提高等离子体科学模拟代码的预测能力。我认为自己是一名进行数值实验的计算物理学家。
奥卡马克是目前最有前途的商业化聚变反应堆配置,但与仿星器相反,它们很容易发生中断。由于它们也是非常复杂的设备,因此中断取决于许多影响以及它们之间的非线性相互作用。脉冲托卡马克实验包括数百万安培数量级的电流放电。这些放电的正常演变可能会被各种类型的不稳定性 1 突然打断。与过度辐射(从可见光到 X 射线光谱区域)、过高的等离子体密度或异常电流分布有关的不稳定性尤为常见和危险。中断发生在两个阶段,即热猝灭和电流猝灭。在热猝灭期间,等离子体的大部分内部能量会在 1 毫秒数量级的时间尺度上损失。热猝灭之后立即是电流猝灭,在此期间等离子体电流会在几毫秒到几百毫秒的时间间隔内熄灭,在当今的托卡马克中这一点尤为明显。中断的前兆通常表现为几个诊断信号异常,例如电子温度异常(图1)。然而,这些所谓的前兆信号也可能出现在非中断等离子体中,这使得中断预测成为一个复杂的多目标问题。由于缓解中断需要立即终止放电,因此误报会浪费大量的资源,而且有损坏设备的风险。因此,需要将误报和漏报保持在最低限度。准确预测中断对于下一代托卡马克来说将更加重要,因为它们将使用面向等离子体的金属部件。金属有几个优点。首先,它可以承受负载且腐蚀程度可接受,这意味着它对面向等离子体的部件的寿命以及托卡马克的效率的影响较小。其次,等离子体燃料的滞留率相对较低。滞留率高,即放射性燃料在壁内积聚,是一种安全威胁
聚变能的商业化正在加速。迄今为止,该行业已吸引超过 60 亿美元的国际投资,这一数字比 2022 年增加了 14 亿美元 3 。世界各地的公共和私营部门聚变组织都在设计原型聚变发电厂,一些组织计划在本世纪末之前开始建设。如果英国要占领私营部门聚变市场的很大一部分,就需要明确规划流程和框架。不仅对于私营聚变公司,而且对于政府的原型聚变发电厂计划 STEP(用于能源生产的球形托卡马克)、投资者、当地社区和所有潜在开发商也是如此。为了提供清晰度并支持不断发展的聚变行业,政府正在发布其为聚变能指定新的国家政策声明 (NPS) 的提案。
拟议规则考虑了目前计划在近期部署的用于商业和研发目的的聚变机。2 “近期”一词不用于指代特定时间范围。工作人员考虑了制定本规则时工作人员所知的聚变科学和技术方法的某些特征和风险水平。3 拟议规则并非旨在解决与当今正在研究和开发的技术有显著不同的推测性聚变技术(例如,当今的设计类型包括托卡马克、仿星器、z 箍缩和场反转,燃料包括氘-氚、氘-氦-3 和质子-硼-11)。拟议规则使用了 ADVANCE 法案对“聚变机”的定义。聚变机器被定义为“一种能够:(1)通过聚变过程将原子核转化为不同的元素、同位素或其他粒子;(2)直接捕获和使用所得产物,包括粒子、热量或其他电磁
我们报告了通过连续硼(b)粉末注射启用的实验高级超导tokamak(EAST)中对边缘区域模式(ELMS)的强烈抑制。边缘谐波振荡在B粉末注入过程中出现,提供足够的颗粒传输以保持恒定密度并避免在ELM稳定的等离子体中积累杂质。准稳态的ELM抑制放电以适度的能量限制改善和在广泛的条件下:加热能力和技术变化,〜3.5元素的电子密度范围,氘或氦离子物种,以及带圆环磁场的任何方向。ELM抑制在阈值边缘B强度以上,并在B注射终止的0.5 s内停止。与ELM抑制作用相反,伴随着NSTX和EAST的LI粉末注射期间的回收减少[R. Maingi等人,Nucl。融合58(2018)024003],由于保留氢而导致的回收减少是不需要用B粉注射的ELM抑制的,为将其作为未来融合设备的ELM控制工具铺平了道路。关键字
第一代商用聚变能工厂的设计采用氘-氚 (DT) 燃料循环。燃料成分氚是一种半衰期为 12.3 年的放射性氢同位素,而氘是一种稳定的天然水成分,两者在 DT 等离子体中“燃烧”。为了实现持续、高效的商用聚变能工厂设计,需要在氚生产(整体增殖和提取)工艺和工程系统以及氚作为气体的处理(包括同位素分离和杂质去除处理)方面取得技术进步。工艺建模和核算方法的改进将有助于降低在制品氚库存,从而提高工厂效率并满足任何将要制定的安全、环境损害和不扩散法规。作为美国氚和轻同位素科学与技术以及国防任务工程处理系统的领先实验室,萨凡纳河国家实验室正在利用其在氢气处理、同位素分离和净化技术方面的能力,设计/建造托卡马克排气处理 (TEP) 系统,这是 ITER 中使用的 DT 燃料循环的主要处理系统。这些任务中使用的能力和经验被应用于与美国能源部合作的公私合作伙伴关系中,以开发可持续的 DT 燃料循环设计,以促进美国聚变能的商业化
抽象的氘融合反应以14.1 MeV中子的形式产生能量,因此,融合反应器成分将暴露于高能量中子辐照的情况下,同时也受到热,机械和磁负荷的影响。暴露于中子辐射会带来许多后果,包括肿胀和尺寸变化,与等离子成分中发生的峰值瞬态热变形相当。辐照还以强烈的非线性方式动态改变了各种热机械特性,温度,应力和肿胀。有关跨越设计参数空间的中子暴露影响的实验数据非常稀疏,这突出了计算机模拟的相关性。在这项研究中,我们探讨了体力/表面牵引方法与特征性形式主义之间的等效性,用于治疗各向异性辐射引起的肿胀。我们发现,用于有限元方法(FEM)模拟的商业和大规模并行的开源软件都适合评估中子暴露对机械载荷反应器组件的影响。我们证明了辐射,辐射肿胀和导热率的降解的两个主要影响如何影响ITER TOKAMAK分流中应力和温度的分布。表征肿胀幅度和治疗模型的明显不确定性表明,基于目前可用的数据,只能给出反应堆成分中最受辐射的反应堆组件中发生的压力估算。