港口特点 位于俄亥俄州卢卡斯县托莱多市伊利湖畔的深水商业港口。 授权:1899 年、1911 年、1935 年、1950 年、1954 年、1958 年和 1960 年的《河流与港口法案》。 河上有 7 英里的联邦水道,莫米湾有 18 英里。项目水深为海湾 28 英尺;渥太华河下游 27 英尺;莫米河上游 25 英尺。 2021 年运送和接收的物资为 1200 万吨。 与 35 个商业港口相连:向 18 个港口运送货物,从 11 个港口接收货物,并向/从 6 个港口运送和接收货物。 联邦密闭处置设施包括 18 号岛和 3 号场地。 主要利益相关者:托莱多-卢卡斯县港务局、托莱多市、美国海岸警卫队、圣玛丽水泥公司、托莱多国际中西部码头、中西部码头南端码头、安德森公司、ADM 谷物公司、Cenovus、塞内卡石油公司、CSX、Holcim (US) Inc.、Arms Dock、Geo. Gradel Co.、Shelly Liquid、Ironhead Marine Inc.、Hansen Mueller、Cleveland Cliffs Toledo 直接还原厂和亿滋国际。项目要求 港口每年需要大约 800,000 立方码的疏浚来维护航道。港口上一次疏浚是在 2023 年,清除了大约 800,000 立方码的物质。计划在 2024 年进行额外的疏浚。
除了给承包商的副标准外,该市还义务了3130万美元的子招聘人员,他们将代表该市在托莱多恢复计划中执行项目。到2024年6月,该市已与八个合作伙伴组织达成了次级协议:卢卡斯县土地银行商业现场拆除和布朗菲尔德的重建; Hope Toledo组织为托莱多的4岁儿童提供了通用Pre-K的访问权限;莫米谷人栖息地和托莱多城市联邦信用合作社管理该市的部分房屋保存和法规合规性赠款计划;资源中心的托莱多地区的大都市公园区;卢卡斯县的心理健康与恢复服务委员会为多项举措;大托莱多的基督教青年会重建Wayman Palmer设施;健康食品激励计划的经济和社区发展研究所。
内布拉斯加大学林肯分校非生物胁迫耐受性博士后职位 内布拉斯加大学林肯分校 Walia 实验室现提供博士后职位,研究水稻和玉米的耐热和耐旱机制。该职位将利用全植物生理学、表型组学和分子方法,专注于谷物对耐热和耐旱胁迫反应的分子和遗传学表征。该项目的目标是从分子层面理解发育事件与非生物胁迫之间的相互作用。具有基因编辑、突变体分析、种子生物学、分子相互作用和/或表达分析方面的经验者优先考虑。应聘者必须拥有植物生物学、分子生物学或植物遗传学或密切相关领域的博士学位。有出版作品证据并对使用分子和功能基因组学方法有浓厚兴趣的候选人将优先考虑。薪水与经验和资历相称。感兴趣的候选人请通过电子邮件向 Harkamal Walia 博士(hwalia2@ unl.edu)申请。请在您的电子邮件中包含以下内容:(1) 简历和 (2) 3 位推荐人的联系信息。如需更多信息,请访问:https://www.unl.edu/psi/harkamal-walia ; https://agronomy.unl.edu/walia ; https://www.unl.edu/psi/ ;
四个RNA靶标,SARS-COV-2 E-GENE(E-GENE),呼吸道合胞病毒(RSV),流感 - A(INF-A)和流感-B(INF-B),并用人类唾液扩增,在多重1- QPCR反应中与透明的透明型均衡型抑制剂策略(均匀的均匀抑制作用)中的人类唾液相结合(干燥(40°C 80分钟)。在20μl反应中使用了四个具有三个技术复制的模板稀释液(4000、400、40和4份)。每个反应中添加了与2.5%人类唾液相对应的通用转运培养基中1/10稀释的唾液1/10。循环条件为:47°C 10分钟,95°C 2分钟,然后是95°C的50个循环10 s,而60°C的50°C持续30 s。
由光子猫态形成的猫态量子比特具有偏置噪声通道,即一种类型的错误占主导地位。我们通过将猫态量子比特耦合到光学腔,证明了这种偏置噪声量子比特也有望用于量子拉比模型(及其变体)的容错模拟。使用猫态量子比特可以有效增强反向旋转耦合,使我们能够探索依赖于反向旋转相互作用的几种迷人的量子现象。此外,偏置噪声猫量子比特的另一个好处是两个主要错误通道(频率和幅度不匹配)都呈指数级抑制。因此,模拟协议对于确定投影子空间的参数驱动的参数误差具有鲁棒性。我们分析了三个例子:(i)量子态的崩溃和复兴;(ii)隐藏的对称性和隧穿动力学;(iii)成对猫码计算。
摘要:甘蔗是一种重要的经济作物,为世界糖供应和生物燃料生产的原料做出了巨大贡献,在全球糖业中发挥着重要作用。然而,生物和非生物胁迫严重阻碍了甘蔗可持续生产力的发展。基因工程已被用于将有用的基因转移到甘蔗植物中以改善其理想性状,并已成为一种基础和应用研究方法,以在不同不利环境条件下保持生长和生产力。然而,转基因方法的使用仍然存在争议,需要严格的实验方法来应对生物安全挑战。成簇的规律间隔短回文重复序列 (CRISPR) 介导的基因组编辑技术正在迅速发展,并可能彻底改变甘蔗生产。本综述旨在探索创新的基因工程技术及其在开发具有增强的抗生物和非生物胁迫能力的甘蔗品种以生产优良甘蔗品种中的成功应用。
摘要:植物在整个发育期都会承受非生物胁迫。非生物应力包括干旱,盐,热,冷,重金属,营养元素和氧化应激。改善植物对各种环境压力的反应对于植物的生存和实用性至关重要。WRKY转录因子具有特殊的结构(WRKY结构域),这使得WRKY转录因子具有不同的转录调节函数。WRKY转录因子不仅可以通过调节植物激素信号通路来调节非生物应激反应以及植物的生长和发育,而且还可以通过与W-Box [Tgacca/Tgacct]结合在其靶基因的启动子中通过与W-Box [TGACCA/TGACCT]结合来促进或抑制下游基因的表达。此外,WRKY转录因子不仅与其他转录因子家族相互作用,以调节植物防御对非生物胁迫的反应,而且还通过识别和与W-box的结合来自我调节,以调节其对非生物胁迫的防御反应。然而,近年来,关于高等植物中WRKY转录因子的调节作用的研究评论稀缺。在这篇综述中,我们着重于WRKY转录因子的结构和分类,以及鉴定其下游目标基因和参与对非生物压力的反应的分子机制,这可以提高植物在非生物压力下的耐受能力,我们还期待着未来的研究指导,并提供了对属性的影响,并提供了属性的影响。
摘要:有益的微生物对于改善各种压力下的作物适应和生长至关重要。它们可以增强养分的吸收,改善植物免疫反应,并帮助植物耐受应激,例如干旱,盐度和热量。任何农作物的产量潜力都受到其相关微生物组的影响以及它们在不同的压力环境下改善生长的潜力。因此,了解植物 - 微生物相互作用的机制至关重要和令人兴奋。玉米(Zea Mays L.)除了小麦和米饭外,是全球主要的主食之一。玉米在全球范围内也是一种工业作物,占其用于饲料,淀粉和生物燃料行业的生产的83%。玉米需要显着的氮肥才能实现最佳生长和产量。玉米植物非常容易受到热,盐度和干旱胁迫,并且需要创新的方法来减轻环境压力的有害影响并减少化学肥料的使用。本综述总结了我们当前对玉米植物与特定微生物之间的利益相互作用的理解。这些有益的微生物提高了植物对压力和提高生产率的弹性。例如,它们调节电子传输,下调过氧化氢酶和上调抗氧化剂。我们还回顾了植物生长促进根瘤菌(PGPR)在增强玉米胁迫耐受性方面的作用。此外,我们还探讨了这些微生物在玉米生产中的应用,并确定了需要解决的主要知识差距,以充分利用有益的微生物的潜力。
为营养科学和卫生专业社区以及食品行业的专业参与者提供了一般流通,包括Tate&Lyle食品成分的潜在客户。它不是为消费者使用而设计的。标签索赔,健康要求以及我们食材的监管和知识产权状况的适用性因管辖权而异。您应该获得有关我们成分的所有法律和法规方面及其在您自己的产品中使用的建议,以确定在任何特定司法管辖区中的特定目的,索赔,经营,标签或特定申请的适用性。此产品信息已发布供您考虑和独立验证。Tate&Lyle对其准确性或完整性不承担任何责任。
我们的 FPGA 已在需要有限逻辑量和适度性能水平的指挥和控制应用中的许多程序中取得了飞行记录。RT PolarFire ® FPGA 具有更高的逻辑密度和更高的性能,可显著提高信号处理吞吐量。太空有效载荷中高速数据路径的设计人员可以使用 RT PolarFire FPGA 来利用可编程逻辑的灵活性和易用性。这对于遥感仪器尤其重要,因为传感器分辨率的增长速度快于下行链路带宽,因此它们必须执行快速增加的机载处理量。
