4 Mozaffarian,D.,Benjamin,E.J.,Go,A.S.,Arnett,D.K.,Blaha,M.J.,Cushman,M.,Turner,M.B。(2015)心脏病和中风统计 - 2016年更新:美国心脏协会的报告。循环,133,E268-E278。5患有先天性心脏病的成年人的心律不齐,第一部分:JACC最先进的评论,F。Bessiere等。J Am Coll Cardiol 2023卷。82第11页第1108-1120页登录编号:37673512 doi:10.1016/j.jacc.2023.06.06.034 6 Hazinski,M。F.,M.F.,Markenson,D.,Neish,S.,Gerardi,M.,M.,Hootman,J.,Nichol,Nichol,Nichol,G。,Smith,Smith,S.(2004)。aha科学陈述:对心脏骤停的反应和选择威胁生命的医疗紧急情况。学校的医疗应急响应计划:医疗保健提供者,政策制定者,学校管理人员和社区领袖的声明。同时发行的流通,109,278-291;儿科,113,155-168;急诊医学年鉴,43,83-99。7 Link,M.,Atkins,D.,Passman,R.,Halperin,H.,Samson,R.,White,R.,Kerber,R。(2010)。第6部分:电疗法。自动化的外部除颤器,除颤,心脏vers和起搏:2010年美国心肺复苏和紧急心血管护理指南。流通,122(补充3),S706 – S719。8 Mell HK,Mumma SN,Hiestand B,Carr BG,Holland T,Stopyra J.农村,郊区和城市地区的紧急医疗服务响应时间。JAMA Surg。 2017年10月1日; 152(10):983-984JAMA Surg。2017年10月1日; 152(10):983-984
毫无疑问,俄罗斯在乌克兰的战争已经成为了解未来无人机战争如何形成的最重要的冲突。本研究报告通过对乌克兰战场上经过实战检验的实践的全面分析,确定了九个关键要点。这些经验教训涵盖技术、理论和政策。报告的四个章节探讨了在各个功能和作战领域中提高无人机能力的主要机会。它们还强调了在开发、集成和部署新型无人系统过程中面临的持续挑战。但重要的是,无人机并不是取得战略胜利或打赢战争的灵丹妙药。因此,本报告努力管理对无人机能力的期望,同时强调人力资本的核心作用。事实上,当与新的使能技术相结合时,熟练的专家可以创造出有效的无人机性能。
这个深入的重点探讨了再生医学和创新疗法领域的发展。神经疗法的创始人兼首席执行官Cory Nicholas博士对其有希望的临床前数据有着令人信服的见解,该数据涉及NRTX-1001,这是一种旨在对抗源自人类Pluripotent干细胞的再生神经细胞疗法。史蒂夫·奥基夫(Steve O'Keeffe),愤怒的@关节炎背后的有远见者,巴塞尔大学的伊万·马丁(Ivan Martin)博士进行了关于再生方法在彻底改变骨关节炎治疗方面的变革潜力的对话,为受影响的人带来了希望。Insmed Incorporated首席科学官Brian Kaspar博士讨论了基因疗法开发中面临的挑战,阐明了医疗研究和发展的不断发展的景观,以及我们如何推动界限来应对这些挑战。最后,联合创始人,卫星治疗学首席执行官兼董事会成员弗兰克·格里森(Frank Gleeson)深入研究了肌肉修复的世界,探索了再生医学的进步和可能性。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
来自 18 个欧盟成员国合作伙伴的联合声明:奥地利安全信息技术中心、比利时网络安全中心、捷克共和国国家网络和信息安全局、丹麦网络安全中心、爱沙尼亚信息系统管理局、芬兰运输和通信局、法国国家信息系统安全局、德国联邦信息安全局、希腊共和国国家网络安全局、爱尔兰国家网络安全中心、意大利国家网络安全局、拉脱维亚国防部、立陶宛国防部国家网络安全中心、卢森堡国家保护高级委员会、荷兰国家通信安全局、荷兰内政和王国关系部、荷兰安全和司法部国家网络安全中心、波兰研究和学术研究中心、斯洛文尼亚政府信息安全办公室、西班牙国家密码中心
番茄成熟转录调控的研究一直由转录因子 (TF) 基因的自发突变引领,这些突变会完全抑制正常成熟,表明它们是“主调节器”。使用 CRISPR/Cas9 诱变技术敲除潜在基因的研究表明情况有所不同,表明调控比以前认为的更为强大。这要求我们重新审视成熟调控模型,并将其替换为涉及部分冗余组件网络的模型。同时,与敲低技术相比,CRISPR/Cas 诱变技术的快速兴起导致出乎意料的弱表型,这表明补偿机制可能会掩盖蛋白质的功能。这强调了评估植物中的这些机制以及精心设计诱变实验的必要性。
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
背景:计算机断层扫描 (CT) 仍然是创伤性脑损伤 (TBI) 成像评估的金标准。TBI 本身因其不良影响已成为发展中国家的主要问题。目的:目的是评估患有 TBI 的患者的颅脑计算机断层扫描图像。材料和方法:对 2013 年 11 月 13 日至 2019 年 5 月 31 日期间在尼日利亚乌约大学教学医院因头部受伤而接受颅脑 CT 检查的患者进行了回顾性研究。持续时间与服务中断的不连贯时间无关。应用简单的数据分析评估了患者的人口统计学和 CT 特征。结果:评估了 232 名患者,最小年龄为 6 个月,最大年龄为 78 岁。男性患者占多数,比例为 2.74:1。受影响最大的年龄段为 30-39 岁(23.27%)和 20-29 岁(22.84%)。44 名患者(18.97%)的脑 CT 正常。CT 异常患者中最常见的病变是颅内出血(n = 188,81.03%)。其中,脑外出血(n = 100,53.19%)超过脑内出血(n = 88,46.81%)。一半的脑内出血是多发性的。34.48%(n = 80)的患者出现颅骨骨折。最常见的部位是面骨(n = 24,30.00%),而最少见的部位是枕骨(n = 4,5.00%)。15% 的患者有多处骨折,其中还包括颅底。结论:TBI 在年轻活跃男性中很常见。最常见的病变是伴有外轴偏向的颅内出血。
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
