审查的摘要目的本综述的目的是总结当前的方法,并使用高分辨率外围定量计算机断层扫描(HR-PQCT)为小儿种群成像骨的成像建议。最新发现成像增长的骨骼具有挑战性,HR-PQCT方案并非在整个中心标准化。为所有研究采用单成像方案是不现实的。因此,我们提出了三个建立的儿童和青少年HR-PQCT成像的协议,并具有每个人的优势和缺点。限制协议变化将增强结果的均匀性,并提高我们比较不同研究组之间研究结果的能力。我们概述了特殊情况以及获取和加工扫描的技巧和技巧,以最大程度地减少运动伪像并考虑骨骼的增长。总结本综述中的建议旨在帮助研究人员在小儿种群中进行HR-PQCT成像,并扩展我们对骨骼结构,建筑和强度的集体知识。
主组硫化岩广泛用于相变数据存储[1-3]和静电能量转换。[4 - 6]相变材料(PCM)可以可逆地在无定形状态和晶状状态之间切换,这些状态与二进制数字“ 0”和“ 1”相等。[1,7]上级PCM需要分别具有高速相变(包括高速相变的属性)以及两个状态之间的大型光学和电阻对比,分别是可重写的光学和非挥发性电子数据存储。[1,8],疗程材料需要大的电导率(σ),如金属中,具有高的seebeck系数(s)(如半轴),以及低导热率(κ)和低的导热率(κ ZT = S2σT /κ的序列。[9-11]有趣的是,这些苛刻且看似矛盾的要求是在一类葡萄菌化合物(例如Gete和SB 2 TE 3)及其合金中发现的。[3,12,13]这种令人惊讶的属性组合促使我们研究了负责属性独特投资组合的潜在机制。材料的特性通常受两种类型的因素约束。其中之一与由组成元素(即通过化学键合机制)连接的固有特性有关。[14]另一个因素与由空缺等结构缺陷控制的外在特性有关,[15,16]位错,[17 - 19]晶界(GBS),[20-23]
8。Budoff MJ,Dowe D,Jollis JG等。64-多探测器行冠状动脉层析成像血管造影的诊断性能,用于评估没有已知冠状动脉疾病的个体的冠状动脉狭窄:前瞻性多中心精度的结果(冠状动脉层析术评估,对受侵入性冠状动脉造影的个体的个体评估)试验。JACC。 2008; 52:1724- 1732。 9。 Knuuti J,Wijns W,Saraste A等。 2019 ESC诊断和管理慢性冠状动脉综合征指南。 EUR HEART j。 2020; 41:407 -477。 10。 Chang HJ,Lin Fy,Gebow D等。 使用CCTA与直接转介的选择性转介的个人转介有关可疑CAD的侵入性冠状动脉血管造影。 JACC。 2019; 12:1303 -1312。 11。 Scanlon PJ,Faxon DP,Audet AM等。 ACC/AHA冠状动脉血管造影指南。 美国心脏病学院/美国心脏协会实践指南(冠状动脉血管造影委员会)的报告。 与心脏血管造影和干预协会合作开发。 JACC。 1999; 33:1756- 1824。 12。 Abbara S,Blanke P,Maroules CD等。 SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。 J Cardiovasc Comput Tomogr。 2016; 10:435 -449。 13。 2020; 14:124 -130。JACC。2008; 52:1724- 1732。9。Knuuti J,Wijns W,Saraste A等。2019 ESC诊断和管理慢性冠状动脉综合征指南。EUR HEART j。 2020; 41:407 -477。 10。 Chang HJ,Lin Fy,Gebow D等。 使用CCTA与直接转介的选择性转介的个人转介有关可疑CAD的侵入性冠状动脉血管造影。 JACC。 2019; 12:1303 -1312。 11。 Scanlon PJ,Faxon DP,Audet AM等。 ACC/AHA冠状动脉血管造影指南。 美国心脏病学院/美国心脏协会实践指南(冠状动脉血管造影委员会)的报告。 与心脏血管造影和干预协会合作开发。 JACC。 1999; 33:1756- 1824。 12。 Abbara S,Blanke P,Maroules CD等。 SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。 J Cardiovasc Comput Tomogr。 2016; 10:435 -449。 13。 2020; 14:124 -130。EUR HEART j。2020; 41:407 -477。10。Chang HJ,Lin Fy,Gebow D等。 使用CCTA与直接转介的选择性转介的个人转介有关可疑CAD的侵入性冠状动脉血管造影。 JACC。 2019; 12:1303 -1312。 11。 Scanlon PJ,Faxon DP,Audet AM等。 ACC/AHA冠状动脉血管造影指南。 美国心脏病学院/美国心脏协会实践指南(冠状动脉血管造影委员会)的报告。 与心脏血管造影和干预协会合作开发。 JACC。 1999; 33:1756- 1824。 12。 Abbara S,Blanke P,Maroules CD等。 SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。 J Cardiovasc Comput Tomogr。 2016; 10:435 -449。 13。 2020; 14:124 -130。Chang HJ,Lin Fy,Gebow D等。使用CCTA与直接转介的选择性转介的个人转介有关可疑CAD的侵入性冠状动脉血管造影。JACC。 2019; 12:1303 -1312。 11。 Scanlon PJ,Faxon DP,Audet AM等。 ACC/AHA冠状动脉血管造影指南。 美国心脏病学院/美国心脏协会实践指南(冠状动脉血管造影委员会)的报告。 与心脏血管造影和干预协会合作开发。 JACC。 1999; 33:1756- 1824。 12。 Abbara S,Blanke P,Maroules CD等。 SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。 J Cardiovasc Comput Tomogr。 2016; 10:435 -449。 13。 2020; 14:124 -130。JACC。2019; 12:1303 -1312。11。Scanlon PJ,Faxon DP,Audet AM等。ACC/AHA冠状动脉血管造影指南。美国心脏病学院/美国心脏协会实践指南(冠状动脉血管造影委员会)的报告。与心脏血管造影和干预协会合作开发。JACC。 1999; 33:1756- 1824。 12。 Abbara S,Blanke P,Maroules CD等。 SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。 J Cardiovasc Comput Tomogr。 2016; 10:435 -449。 13。 2020; 14:124 -130。JACC。1999; 33:1756- 1824。12。Abbara S,Blanke P,Maroules CD等。 SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。 J Cardiovasc Comput Tomogr。 2016; 10:435 -449。 13。 2020; 14:124 -130。Abbara S,Blanke P,Maroules CD等。SCCT绩效和获取冠状动脉层析成像血管造影的指南:心血管计算机断层扫描指南委员会的报告。J Cardiovasc Comput Tomogr。2016; 10:435 -449。13。2020; 14:124 -130。Choi AD,Parwani P,Michos ED等。 全球社交媒体对第14届心血管计算机断层扫描科学会议的反应。 J Cardiovasc Comput Tomogr。 14。 Choi AD,Thomas DM,Lee J等。 2020 SCCT培训心脏病学和放射学学员作为独立从业者(II级)和高级从业人员(III级)心血管计算机断层扫描中:心血管计算机断层扫描学会的声明。 Radiolo Cardioth Imag。 2021; 3:e200480。 15。 Choi AD,Marques H,Kumar V等。 CT通过人工智能评估动脉粥样硬化,狭窄和血管形态(澄清):多个中心,国际研究。 J Cardiovasc。 Comput Tomogr。 2021; 15(6):470 -476。 16。 Williams MC,Earls JP,Hecht H.动脉粥样硬化斑块的定量评估,最近的进度和当前局限性。 J Cardiovasc Comput Tomogr。 2022; 16(2):124 -137。 17。 Griffin WF,Choi AD,Riess J,Marques H,Chang HJ,Credence研究人员,Earls J.P. AI对CT冠状动脉血管造影的冠状动脉狭窄评估,与定量冠状动脉造影和分数流动储备进行比较;一项信誉试验子研究。 JACC心脏曲线成像。 2023; 16(2):193- 205。 18。 美国核心脏病学会。 报销和编码程序。 2020。https://www.asnc.org/coding_reimbursement19。 Douglas PS,Hoffmann U,Patel MR等。 n Engl J Med。 20。Choi AD,Parwani P,Michos ED等。全球社交媒体对第14届心血管计算机断层扫描科学会议的反应。J Cardiovasc Comput Tomogr。14。Choi AD,Thomas DM,Lee J等。 2020 SCCT培训心脏病学和放射学学员作为独立从业者(II级)和高级从业人员(III级)心血管计算机断层扫描中:心血管计算机断层扫描学会的声明。 Radiolo Cardioth Imag。 2021; 3:e200480。 15。 Choi AD,Marques H,Kumar V等。 CT通过人工智能评估动脉粥样硬化,狭窄和血管形态(澄清):多个中心,国际研究。 J Cardiovasc。 Comput Tomogr。 2021; 15(6):470 -476。 16。 Williams MC,Earls JP,Hecht H.动脉粥样硬化斑块的定量评估,最近的进度和当前局限性。 J Cardiovasc Comput Tomogr。 2022; 16(2):124 -137。 17。 Griffin WF,Choi AD,Riess J,Marques H,Chang HJ,Credence研究人员,Earls J.P. AI对CT冠状动脉血管造影的冠状动脉狭窄评估,与定量冠状动脉造影和分数流动储备进行比较;一项信誉试验子研究。 JACC心脏曲线成像。 2023; 16(2):193- 205。 18。 美国核心脏病学会。 报销和编码程序。 2020。https://www.asnc.org/coding_reimbursement19。 Douglas PS,Hoffmann U,Patel MR等。 n Engl J Med。 20。Choi AD,Thomas DM,Lee J等。2020 SCCT培训心脏病学和放射学学员作为独立从业者(II级)和高级从业人员(III级)心血管计算机断层扫描中:心血管计算机断层扫描学会的声明。Radiolo Cardioth Imag。2021; 3:e200480。15。Choi AD,Marques H,Kumar V等。 CT通过人工智能评估动脉粥样硬化,狭窄和血管形态(澄清):多个中心,国际研究。 J Cardiovasc。 Comput Tomogr。 2021; 15(6):470 -476。 16。 Williams MC,Earls JP,Hecht H.动脉粥样硬化斑块的定量评估,最近的进度和当前局限性。 J Cardiovasc Comput Tomogr。 2022; 16(2):124 -137。 17。 Griffin WF,Choi AD,Riess J,Marques H,Chang HJ,Credence研究人员,Earls J.P. AI对CT冠状动脉血管造影的冠状动脉狭窄评估,与定量冠状动脉造影和分数流动储备进行比较;一项信誉试验子研究。 JACC心脏曲线成像。 2023; 16(2):193- 205。 18。 美国核心脏病学会。 报销和编码程序。 2020。https://www.asnc.org/coding_reimbursement19。 Douglas PS,Hoffmann U,Patel MR等。 n Engl J Med。 20。Choi AD,Marques H,Kumar V等。CT通过人工智能评估动脉粥样硬化,狭窄和血管形态(澄清):多个中心,国际研究。J Cardiovasc。 Comput Tomogr。 2021; 15(6):470 -476。 16。 Williams MC,Earls JP,Hecht H.动脉粥样硬化斑块的定量评估,最近的进度和当前局限性。 J Cardiovasc Comput Tomogr。 2022; 16(2):124 -137。 17。 Griffin WF,Choi AD,Riess J,Marques H,Chang HJ,Credence研究人员,Earls J.P. AI对CT冠状动脉血管造影的冠状动脉狭窄评估,与定量冠状动脉造影和分数流动储备进行比较;一项信誉试验子研究。 JACC心脏曲线成像。 2023; 16(2):193- 205。 18。 美国核心脏病学会。 报销和编码程序。 2020。https://www.asnc.org/coding_reimbursement19。 Douglas PS,Hoffmann U,Patel MR等。 n Engl J Med。 20。J Cardiovasc。Comput Tomogr。2021; 15(6):470 -476。16。Williams MC,Earls JP,Hecht H.动脉粥样硬化斑块的定量评估,最近的进度和当前局限性。J Cardiovasc Comput Tomogr。2022; 16(2):124 -137。17。Griffin WF,Choi AD,Riess J,Marques H,Chang HJ,Credence研究人员,Earls J.P. AI对CT冠状动脉血管造影的冠状动脉狭窄评估,与定量冠状动脉造影和分数流动储备进行比较;一项信誉试验子研究。JACC心脏曲线成像。2023; 16(2):193- 205。18。美国核心脏病学会。报销和编码程序。2020。https://www.asnc.org/coding_reimbursement19。Douglas PS,Hoffmann U,Patel MR等。 n Engl J Med。 20。Douglas PS,Hoffmann U,Patel MR等。n Engl J Med。20。冠状动脉疾病的解剖学与功能测试的结局。2015; 372:1291- 1300。Marwick Th,Cho I,ÓHartaighB,Min JK。 找到心脏导管实验室的守门人。 JACC。 2015; 65:2747- 2756。 21。 Lucas FL,Siewers AE,Malenka DJ,Wennberg de。 诊断 - 治疗性级联反应:冠状动脉血管造影,冠状动脉搭桥手术手术和经皮冠状动脉干预。 循环。 2008; 118:2797-2802。Marwick Th,Cho I,ÓHartaighB,Min JK。找到心脏导管实验室的守门人。JACC。 2015; 65:2747- 2756。 21。 Lucas FL,Siewers AE,Malenka DJ,Wennberg de。 诊断 - 治疗性级联反应:冠状动脉血管造影,冠状动脉搭桥手术手术和经皮冠状动脉干预。 循环。 2008; 118:2797-2802。JACC。2015; 65:2747- 2756。21。Lucas FL,Siewers AE,Malenka DJ,Wennberg de。 诊断 - 治疗性级联反应:冠状动脉血管造影,冠状动脉搭桥手术手术和经皮冠状动脉干预。 循环。 2008; 118:2797-2802。Lucas FL,Siewers AE,Malenka DJ,Wennberg de。诊断 - 治疗性级联反应:冠状动脉血管造影,冠状动脉搭桥手术手术和经皮冠状动脉干预。循环。2008; 118:2797-2802。
多发性硬化症 (MS) 是一种影响中枢神经系统 (CNS) 的神经退行性疾病。在 MS 中,免疫系统会攻击大脑和脊髓中的神经纤维和髓鞘。其后果是整个 CNS 出现炎症、脱髓鞘和轴突变性,破坏神经细胞过程并改变大脑中的电信息。确诊 MS 很困难,尤其是在疾病的早期阶段,此时症状可能很轻微、零星,甚至类似于其他疾病状况。诊断基于 McDonald 标准,包括从神经系统检查和神经系统症状史中提取的临床、放射学和实验室参数 [1]。McDonald 标准的初始版本于 2001 年提出,并经过多次修订。最新标准可追溯到 2017 年。要根据 2017 年 McDonald 标准诊断为 MS,个人必须有证据表明中枢神经系统因炎症而受到损伤,并且炎症在空间和时间上不断扩散。当神经损伤出现在中枢神经系统的多个部位或神经系统的多个区域时,就会发生空间播散。具体而言,McDonald 2017 标准确定病变应出现在神经系统以下四个区域中的至少两个:大脑的脑室周围、近皮质或皮质、幕下区域和脊髓。当神经损伤发生在患者病史的多个时间点时,就会发生时间播散。损伤可以通过第二次疾病恶化、新病变的出现或相同区域损伤发生在不同时间的证据(例如,不再活跃发炎的旧病变周围出现新的炎性病变)来证明。大脑和脊髓的磁共振成像 (MRI) 用于检测 MS 损伤的典型斑块或疤痕。钆增强病变是活动性炎症区域,因此可以使用钆 MRI 来区分活动性和非活动性病变。此外,脑脊液 (CSF) 中存在寡克隆带 (OB) 表明存在中枢神经系统炎症。患有临床孤立综合征 (CIS) 的个体经历过一次 MS 症状发作,因此不符合时间播散标准。对于这些个体,OB 已被确定为复发的独立预测因素。因此,McDonald 2017 标准将 OB 检测呈阳性确立为充分标准,即使在仅在其病史的一个时间点显示明显损伤的患者中,也可以取代时间播散标准。不幸的是,MRI 和 CSF 评估耗时、昂贵且具有侵入性。例如,磁共振设备价格昂贵,图像采集时间可能为 10 到 30 分钟。钆注射有副作用,例如注射部位疼痛、恶心、瘙痒、头晕和头痛。脑脊液样本是通过腰椎穿刺采集的,在局部麻醉下大约需要半小时。它可以被描述为令人不快和痛苦的,副作用可能包括穿刺区域感染和头痛。出于这些原因,值得探索补充或替代标准,以便在经过适当验证后将其纳入麦当劳标准。
摘要 — 由于量子信息对噪声非常敏感,因此量子信息系统的实验实现将非常困难。克服这种敏感性对于设计能够可靠地在远距离传输量子信息的量子网络至关重要。此外,表征量子网络中通信噪声的能力对于开发能够克服量子网络噪声影响的网络协议至关重要。在这种情况下,量子网络断层扫描是指通过端到端测量来表征量子网络中的信道噪声。在这项工作中,我们提出了由单个非平凡泡利算子表征的量子信道形成的量子星型网络的网络断层扫描协议。我们的结果通过引入状态分布和测量分别设计的断层扫描协议,进一步提高了量子位翻转星型网络的端到端表征。我们以先前提出的量子网络断层扫描协议为基础,并提供了用于独特表征星型中位翻转概率的新方法。我们引入了一个基于量子费舍尔信息矩阵的理论基准来比较量子网络协议的效率。我们将我们的技术应用于所提出的协议,并对纠缠对量子网络断层扫描的潜在好处进行了初步分析。此外,我们使用 NetSquid 模拟所提出的协议,以评估针对特定参数范围获得的估计器的收敛特性。我们的研究结果表明,协议的效率取决于参数值,并激发了对自适应量子网络断层扫描协议的搜索。
手稿于2023年6月19日收到;修订于2023年6月26日; 2023年6月27日接受。出版日期; 2023年6月28日;当前版本的日期2023年7月18日。这项工作得到了美国能源部(Los Alamos报告编号LA-ur-22-32994)的部分支持,合同89233218CNA000001。根据20190043dr奖,洛斯阿拉莫斯国家实验室的实验室指导研究与开发计划(LDRD)计划的支持。Reeju Pokharel的工作得到了Grant Doe-NNSA的能源部国家核安全部门的动态材料物业运动的支持。Daniel J. Rutstrom的工作得到了DOE-NNSA的部分支持,该公司通过核科学和安全联盟颁发的DE-NA-0003 180奖和DE-NA-0003996奖和核能办公室,核能办公室,综合大学计划研究生奖学金。C. L. Morris和Mariya Zhuravleva的工作得到了田纳西大学的核科学和安全财团的支持,该联盟颁发了DE-NA-0003 180奖和DE-NA-0003996奖。Anton S. tremsin的工作得到了美国能源/NNSA/DNN研发部的部分支持,部分以及劳伦斯·伯克利国家实验室的一部分是根据合同AC02-05CH11231所支持的。本文的较早版本是在第16届闪烁材料及其应用国际会议的特刊(SCINT22),9月19日至23日,2022年,美国新墨西哥州圣达菲[doi:10.48550/arxiv.2212.10322]。(通讯作者:Zhehui Wang。)数字对象标识符10.1109/tns.2023.3290826Christotoge Dujardin与LumièreMatièreInstitut,UMR5306,CNRS,CNRS,UniverséClaudeBernard Lyon1,69622法国Villebanne,法国(电子邮件:christophhe.dujardin@.fr)。 Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。 Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > > > >Christotoge Dujardin与LumièreMatièreInstitut,UMR5306,CNRS,CNRS,UniverséClaudeBernard Lyon1,69622法国Villebanne,法国(电子邮件:christophhe.dujardin@.fr)。Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。 Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > > >Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > >Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; >Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu;Mar Nikl曾在捷克科学学院的物理研究所,捷克共和国普拉格16200号(电子邮件:nikl@fzu.cz)。Anton S. Tremsin与加利福尼亚州伯克利分校的太空科学实验室一起,美国加利福尼亚州94720美国(电子邮件:astr@berkeley.edu)。本文中一个或多个数字的颜色版本可从https://doi.org/10.1109/tns.2023.3
1心脏病学系,心脏科学系,Ente Ospedaliero Cantonale,6900 Lugano,瑞士卢加诺2 Graz, Austria 5 Faculty of Biomedical Sciences, Universit à della Svizzera Italiana (USI), 6900 Lugano, Switzerland 6 Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland 7 Faculty of Biology and Medicine, University of Lausanne (UNIL), 1015瑞士洛桑(Lausanne)8,Azienda Sanitaria Locale Torino 4,10073 Ospedale diciriè,意大利 *通信:luigi.biasco@gmail.com†这些作者为这项工作做出了同样的贡献。
RenatoAmbrósioJr,Aydano P. Machado,EdileuzaLeão,JoãoMarceloG. Lyra,MarcellaQ.Salomão,Louise G. Pellegrino Esporcatte,Joãobrbr da Fonsecals,Eri-ne-ne-ne-ne berna,Eri-ne-ne-berna file Thia J. Roberts,Ahmed Elsheikh,Riccardo Vinciguerra,Paolo Vinciguerra,JensBüashren,Thom Khadoh,M。F. I,Nikki L. Hafezi,Emilio Trattler,Luca Gualdi,Joséaldi,Do-Norga-Foria-Coria lias Flockerzi,Berthold Seitz,Vishal Jhanji,Tommy Cy Chan,Pedro Manuel Baptista,Dan Z. Reclestein,Timothy J.Archer,Karolinne M. Rocha,乔治·沃尔姆,我,Soheila Asgari,Hamed Momeni-Moghaddam,Siamak Zarei-Ghanavati,Rohit Shetty,Pooja Khamar,Michael W. Belin和Bernardo T. Lopes
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
摘要:脑肿瘤是最致命的疾病之一,对人类健康有许多影响。脑肿瘤是脑内或脑周围的异常细胞团或生长。它们并非都是癌症,因为它们可能是良性的或恶性的。医生使用各种诊断技术来评估良性或恶性脑肿瘤的存在,以及估计其大小、位置和生长速度。使用适当的诊断方式来提供完整的大脑视图以检测任何异常。应对脑部进行计算机断层扫描 (CT) 扫描以检查异常。CT 扫描的好处包括准确检测钙化、出血和骨骼细节,以及与磁共振成像 (MRI) 相比成本低。因此,我们研究了一种基于 CT 的检测方法,以确定是否存在脑肿瘤。所提出的方法适用于从曼苏拉大学医院收集的 CT 图像数据集。使用不同的预训练模型:VGG-16、ResNet-50 和 MobileNet-V2。对比结果,预训练模型 MobileNet-V2 尽管参数数量最少,但结果却更好。它的准确率为 97.6%,而其精确度、召回率和 F1 分数分别为 96%、95% 和 96%。