Luca Tubiana 1 , 2 , ∗ , Gareth P. Alexander 3 , Agnese Barbensi 4 , Dorothy Buck 5 , Julyan HE Cartwright 6 , 7 , Mateusz Chwastyk 8 , Marek Cieplak 8 , Ivan Coluzza 9 , Simon Čopar 10 , David J. Craik 11 , Marco Di Stefano 12 , Ralf Everaers 13 , Patrícia FN Faísca 14 , 15 , Franco Ferrari 16 , Achille Giacometti 17 , 18 , Dimos Goundaroulis 9 , 19 , Ellinor Haglund 20 , Ya-Ming Hou 21 , Nevena Ilieva 22 , Sophie E. Jackson 23 , Aleksandre Japaridze 24 , Noam Kaplan 25,Alexander R. Klotz 26,Hongbin Li 27,Christos N. Likos 28,Emanuele Locatelli 28,29,30,TeresaLópez-León31,Thomas Machon 32,Cristian Micheletti 33,Davide Michieletto 34,34,35,35,Antti niiem 33,33 39,Francesco Nitti 40,Enzo Orlandini 29,30,Samuela Pasquali 42,Agata P. Perlinska 39,Rudolf Podgornik 43,44,45,Raffaello Potestio 1,2拉夫尼克 10,48, 伦佐·里卡 49,50, 克里斯蒂安·M·罗沃 51,52, 安杰洛·罗萨 33, 扬·斯姆雷克 28, 安东·苏斯洛夫 53, 安德烈·斯塔西亚克 54,55, 达尼埃莱·斯蒂尔 40,41, 乔安娜·苏乌科夫斯卡 39, 皮奥特·苏乌科夫斯基 56, 德威特·L·萨姆纳斯 57, 卡斯滕·斯瓦内博格 58, 皮奥特·希姆扎克 56, 托马斯·塔伦齐 59, 鲁伊·特拉瓦索 60, 彼得·维尔瑙 61, 迪米特里斯·弗拉索普洛斯 62,63, 普里莫日·齐赫尔 10,48, 斯洛博丹·尤默 10,48
在扩大资源发展的背景下以及地下空间的利用,工程灾难(例如滑坡,隧道倒塌,地震,碎片流和城市基础设施故障),导致了实质性的经济损失和伤亡。复杂的环境因素,包括弱或不稳定的地质结构,液压和大气压影响,大降雨和水位波动,流体 - 固定的耦合,地震和外部动态干扰,会显着影响强度,变形和稳定性的岩土技术材料的稳定性(Han et and。等,2024; Han等,2018)。因此,在复杂的环境中调查和理解工程灾难的演化机制和开发有效的灾难控制方法已成为工程界的关键任务。为了促进预防灾难和控制的研究进度,并促进同龄人之间的交流,我们很荣幸介绍研究主题:“在复杂环境下进行工程灾难的进化机制和控制方法。”该研究主题旨在收集最先进的研究结果,新方法,案例研究和审查文章,特别关注与灾难控制方法和失败演化机制有关的研究。该研究主题受到了广泛的关注和许多提交。该项目现已得出结论,共有29篇发表的论文涵盖了灾难分析
在生物学研究的动态领域中,我们目睹了一个变革性的时代,重新掌握了我们对细胞功能,发育过程和疾病复杂性的掌握。这一科学文艺复兴时期的核心是单细胞(SC)基于OMICS的分析,包括单细胞多组合的领先技术,以及基于创新的干细胞方法。这些技术已经催化了一系列发现,为我们寻求知识和彻底改变了科学研究的景观开辟了新的边界。干细胞的探索标志着这一旅程中重要的一章。以其显着的自我更新和分化能力而闻名,干细胞对于维持组织平衡和增生至关重要。对它们的性质和生物过程的这种更深入的了解不仅提高了再生医学领域,而且还引入了潜在的治疗策略来打击各种疾病,为全球提供了新的希望和治疗可能性。此外,将体细胞重编程为多能干细胞的过程是特别引人注目的进步。该技术可以通过从患者或基因工程中得出细胞来反映特定疾病,从而创建各种疾病模型,从而提供了一种强大的工具来以更加个人和精确的水平探索疾病机制。对干细胞生物学和疾病建模的这种见解展示了一个有希望的突破性领域,以前比作科学领域。Zhang等。Zhang等。它还改善了药物筛查方法,从在单一细胞上测试候选药物到在复杂的组织上测试具有许多类型的细胞在一起的复杂组织,它们可以更好地模拟体内的真实病理状况。本评论的研究主题探讨了SC-Ser-sequesting技术的变革性影响,尤其是它们扩展到SC-Multiomics,使用干细胞作为推进疾病理解,诊断和药物发现的平台。应对药物开发的持续挑战,例如成功率低
摘要本文研究了“ Li”几何形状拓扑的创新负面群体延迟(NGD)理论。Li-Topology是一个非常简单且完全分布的电路,该电路由耦合线(CL)组成。考虑了CL耦合系数,延迟和衰减的LI S参数模型。NGD分析表明,开发了有关LI拓扑参数的NGD条件的可能性。表达了NGD特征作为NGD值,中心频率,带宽,传输和反射系数。Li-NGD理论通过微带技术实施的两个概念概念证明。计算的模型,模拟和测量值良好。正如预期的,在大约2.56 GHz和0.92 GHz时,Bandpass NGD呈现中心频率,NGD水平约为-0.9 ns和-3.7 ns,大小为li原型。出色的时间域分析,解释了带通道NGD的含义,其创新的衰减输出也呈现。时间域结果突出显示了不违反因果关系的时间及时的脉冲信号信封。
试图显示具有更长范围相互作用的量子ISING模型的共形歧管上的拓扑转变。该模型哈密顿系统具有不同的间隙相位,具有不同的拓扑指数,并且根据横向场的存在和不存在,也具有不同的量子临界线。我们还提供了参数空间不同机制的中心电荷。在存在和不存在横向场的情况下,以及C的非宇宙特征,我们明确显示了关键,拓扑和中央电荷(C)的相互作用。我们显示了在存在横向场的情况下,在存在横向场的情况下,LIFSHITZ过渡是如何发生的。我们明确地表明了保形场理论(CFT)临界性和非CFT临界性的存在。我们提出了一个明确的计算,以找到多项式函数与Anderson-Pseudo自旋模型Hamiltonian之间的关系。我们的结果比非互动的许多人体系统的存在结果更丰富。这项工作不仅提供了保形场理论拓扑状态的新观点,而且还提供了低维量子系统的许多身体系统。
颞叶癫痫中非典型皮质不对称和萎缩模式的拓扑发散Park, B.-y.;拉里维尔,S.;罗德里格斯-克鲁塞斯,R.;罗耶,J.;塔瓦科尔,S.;王,Y.; Caciagli,L.; Caligiuri,M.E.;甘巴德拉(Gambardella),A.; Concha,L.;凯勒,SS; Cendes,F.;阿尔维姆(MKM);安田,C.; Bonilha,L.; Gleichgerrcht,E.;福克,NK;克雷尔坎普(BAK);洛德,M.; Podewils,F.冯;朗纳,S.;鲁默尔,C.; Rebsamen,M.;威斯特,R.;马丁,P.; Kotikalapudi,R.;本德,B.;奥布莱恩,T.J.;法律,M.;辛克莱,B.; Vivash,L.;关,P.;德斯蒙德,PM;马尔帕斯,CB;他,E.;阿尔胡塞尼,S.;多尔蒂,C.P.卡瓦莱里,GL;德兰蒂,N.;卡尔维宁,R.;杰克逊,G.D.; Kowalczyk,M.;马斯卡尔奇,M.; Semmelroch,M.;托马斯,R.H.; Soltanian-Zadeh,H.; Davoodi-Bojd,E.;张,J.; Lenge,M.;格里尼(Guerrini),R.;巴托利尼,E.;哈曼迪,K.;福利,S.;韦伯,B.; Depondt,C.;阿布西尔,J.;卡尔,SJA;阿贝拉,E.;理查森,国会议员;德文斯基,O.;塞韦里诺,M.;斯特拉诺,P.;帕罗迪,C.; Turtledove,D.;哈顿,S.N.你,SB;邓肯,J.S.; Galovic,M.;惠兰,CD; Bargalló,N.; Parente,J.; Conde-Blanco,E.;沃达诺,AE; Tondelli,M.;梅莱蒂,S.;孔祥哲;弗兰克斯,C.;费舍尔,SE;卡尔达鲁,B.;赖顿,M.;拉巴特,A.;西索迪亚,SM;汤普森,PM;麦当劳,C.R.;贝尔纳斯科尼,A.;贝尔纳斯科尼,N.; Bernhardt,BC 2022,文章/致编辑的信(Brain,145,4,(2022),第 1285-1298 页)
5 加州大学伯克利分校分子与细胞生物学系,加利福尼亚州伯克利,美国。 6 马克斯普朗克分子细胞生物学和遗传学研究所以及马克斯普朗克复杂系统物理研究所,德国德累斯顿。 7 欧洲分子生物学实验室(EMBL),发育生物学部,德国海德堡。 8 加州大学欧文分校发育与细胞生物学系,加利福尼亚州欧文,美国。 9 波士顿大学生物医学工程系和生物设计中心,马萨诸塞州波士顿,美国# 通讯作者:alvaro.sanchez@yale.edu 摘要 定向进化已用于自上而下地设计生物系统数十年。通常,它已应用于生物体水平或以下,通过迭代采样突变景观来引导寻找具有更高功能的遗传变异。在生物体水平之上,少数研究尝试人工选择微生物群落和生态系统,但成功率参差不齐,且通常不高。我们对人工生态系统选择的理论理解仍然有限,特别是对于大型无性生物群落,而且我们对设计有效的方法来指导它们的进化知之甚少。为了解决这个问题,我们开发了一个灵活的建模框架,使我们能够在广泛的生态条件下系统地探究任意一组群落和选定功能上的任意选择策略。通过在相同条件下人工选择数百个计算机模拟微生物元群落,我们检查了迄今为止使用的两种主要育种方法的基本局限性,并规定了显着提高其功效的修改。我们确定了一系列定向进化策略,特别是当结合使用时,它们更适合自上而下地设计大型、多样化和稳定的微生物群落。我们的结果强调,定向进化允许在生态结构功能景观中进行导航,以寻找动态稳定、生态和功能具有弹性的高功能群落。