有多种证据表明区分 Top2 毒药和 Top2 催化抑制剂的重要性。酵母和哺乳动物细胞的研究表明,对 Top2 毒药的抗药性是隐性的,即,在存在药物敏感等位基因的情况下存在耐药 Top2 会导致细胞对药物敏感(详见 5、6 )。酶介导的 DNA 损伤的重要性还通过观察结果得到证实,即 Top2 毒药会迅速引发 DNA 损伤反应,如 ATM 磷酸化和激活下游损伤反应 7-9 。哺乳动物细胞对针对 Top2 的药物的抗药性通常与 Top2 同工型表达降低有关 6 ,这表明抗药性是通过减少酶介导的 DNA 损伤来介导的,而不是通过增强可用的酶活性(抗药性源于 Top2 同工型表达增加)。
DNA拓扑异构酶IIα(TOP2α /170)是增殖细胞必不可少的酶。为了说话繁殖恶性肿瘤,这使Top2α /170成为依托泊苷和其他临床活性抗癌药物的重要靶标。这些药物的功效通常受到与TOP2α /170表达水平的改变有关的情况的限制。我们的实验室最近显示出TOP2α /170的水平降低,并且由于内含子的聚腺苷酸化(IPA;内含子19)在获得的可获得的依托托糖苷抗性K562 k562 k562 clonal细胞系中,C末端截短的90 kDa同工型TOP2α /90降低了TOP2α /90。我们先前报道说,这种同工型用TOP2α /170异构二聚体是对依托泊苷的耐药性的决定因素。通过基因编辑恢复的TOP2α /170水平,在耐药K /VP.5细胞中优化耐药的K /VP.5细胞中的剪接位点,TOP2α /90表达降低,并降低了耐药性。通过CRISPR /CAS9对父母K562细胞中的外显子19 /内含子进行沉默,并通过同源指导修复(HDR)进行沉默,从而迫使内含子19保留,从而诱导抵抗力,从而诱导抵抗力,从而破坏正常的RNA处理(即进一步评估90 nir and 2 and 2 and 2 and 2)同工型作为抗性决定因素。通过定量聚合酶链反应(QPCR)鉴定基因编辑的克隆,并通过Sanger测序验证。RNA-SEQ和QPCR研究表明,内含子19保留导致TOP2α编辑的mRNA转录物的降解导致TOP2α /170的表达降低。TOP2α / 170 mRNA /蛋白质表达水平在TOP2α基因编辑的克隆中衰减,这会导致对依托泊苷的耐药性,如依托泊苷诱导的DNA损伤(γH2AX,彗星测定)和生长抑制所评估。在基因编辑的K562细胞中TOP2α /90的强制表达进一步降低了依托泊苷诱导的DNA损伤,以支持该截短的同工型的主要负面作用。共同支持TOP2α /170和Top2α /90作为对TOP2α-靶向剂的灵敏度 /耐药性的重要作用。
摘要 DNA 拓扑异构酶 II α (170 kDa, TOP2 α /170) 诱导增殖细胞中瞬时 DNA 双链断裂,以解决染色体凝聚、复制和分离过程中的 DNA 拓扑纠缠。因此,TOP2 α /170 是抗癌药物的主要靶点,其临床疗效常常因化学耐药性而受到影响。尽管已经确定了许多耐药机制,但人类癌细胞系对 TOP2 α 界面抑制剂/毒药的获得性耐药通常与 Top2 α /170 表达水平的降低有关。我们实验室最近的研究,结合其他研究人员的早期发现,支持以下假设:对 TOP2 α 靶向药物的获得性耐药的主要机制是由于替代的 RNA 加工/剪接。具体而言,已报道了几种 TOP2 α mRNA 剪接变体,它们保留了内含子,并被翻译成缺乏核定位序列的截短 TOP2 α 异构体,随后导致核质分布失调。此外,内含子保留可能导致截短异构体缺乏核定位序列和活性位点酪氨酸 (Tyr805),而活性位点酪氨酸是形成酶-DNA 共价复合物所必需的,并且在存在 TOP2 α 靶向药物的情况下诱导 DNA 损伤。最终,这些截短的 TOP2 α 异构体导致药物对细胞核中的 TOP2 α 的活性降低并表现出耐药性。因此,对调节 TOP2 α 前 mRNA 的替代 RNA 加工的机制的完整表征可能会产生新的策略来规避获得性耐药性。此外,新型 TOP2 α 剪接变体和截短的 TOP2 α 同工型可用作药物耐药性、预后和/或直接未来 TOP2 α 靶向治疗的生物标志物。
人们对社会性的胚胎发育了解甚少。我们筛选了 1120 种已知药物,发现胚胎抑制拓扑异构酶 II α (Top2a) 会导致斑马鱼出现持久的社会缺陷。在小鼠中,产前 Top2 抑制会导致社交互动和交流缺陷,而这些行为与自闭症的核心症状有关。斑马鱼 Top2a 突变导致一组基因下调,这些基因高度富含与人类自闭症相关的基因。Top2a 调节的和自闭症相关的基因组都具有多梳抑制复合物 2 (PRC2) 的结合位点,PRC2 是一种负责 H3K27 三甲基化 (H3K27me3) 的调节复合物。此外,这两个基因组都高度富含 H3K27me3。抑制 PRC2 成分 Ezh2 可挽救 Top2 抑制引起的社会缺陷。因此,Top2a 是进化保守途径的关键组成部分,该途径通过 PRC2 和 H3K27me3 促进社会行为的发展。
DNA损伤反应(DDR)与代谢之间的复杂相互作用,对管理基因组完整性维持的基本机制有深刻的了解[1]。细胞不断遇到诱导DNA损伤的内源性和外源性威胁,如果未修复,可能会导致突变,基因组不稳定性,并最终导致癌症等疾病[2]。代谢为DNA修复过程提供了必要的能量和构建块[3]。值得注意的是,DDR和代谢中的关键信号通路和酶促活性都紧密相关。例如,ATM和ATR激酶对DNA损伤的激活直接通过调节MTOR途径和细胞能量来直接影响细胞代谢状态[4]。此外,DNA修复酶(例如PARP1)与NAD+代谢相关,其活性会影响细胞生物能学[5]。DDR和代谢之间的这种复杂的串扰不仅确保基因组稳定性,而且还低估了细胞稳态在保护遗传信息中的重要作用,这使其成为对人类健康和疾病有深远影响的关键研究领域。本期特刊介绍了DNA损伤反应和癌症代谢领域领先专家的九篇论文。这些论文重点介绍了特定DNA破坏药物的药代动力学和药效学分析的最新进展,以及在DDR中发现新因素和调节机制的发现,包括DNA修复,检查点途径,复制应激,细胞死亡,细胞死亡和癌症代谢。Park等。Park等。此外,这些论文阐明了这些系统之间复杂的串扰,为基因组稳定性和针对DNA损伤的细胞代谢的广泛景观提供了宝贵的见解。在依托泊苷(ETO)处理中探究锌纤维蛋白Zatt的作用,揭示其在修复拓扑异构酶II(TOP2)的双重功能 - DNA共价复合物(TOP2CC)并在ETO治疗后促进细胞存活。ETO稳定瞬态top2cc,导致DNA双链断裂(DSB)。TOP2CC的修复涉及酪酶-DNA磷酸二酯酶2(TDP2),它从DSB的5'末端去除磷酸酪糖基肽。这项研究采用了全基因组CRISPR筛选,并证明Zatt在ETO处理后促进细胞存活中起着至关重要的作用,与TDP2-KO细胞相比,Zatt敲除(KO)细胞显示对ETO的敏感性提高。对Zatt的结构方面的进一步研究表明,N末端1-168残基对于与TOP2相互作用至关重要,显着影响ETO敏感性。在ETO或环己二酰亚胺处理后加速了TOP2降解,表明其在提高TOP2稳定性的作用,并可能导致TOP2周转率。这些发现表明,Zatt是对ETO治疗的反应的关键决定因素,其承诺是增强ETO在癌症治疗中效率的策略。Yeom等。 研究了与DNA聚合酶η相关的三种人Polh种系变体的功能特性,DNA聚合酶η是一种关键酶,负责无错误的跨性别DNA合成(TLS)。Yeom等。研究了与DNA聚合酶η相关的三种人Polh种系变体的功能特性,DNA聚合酶η是一种关键酶,负责无错误的跨性别DNA合成(TLS)。这些变体与易皮肤癌的结合(即,静脉表色素变体(XPV))和对顺铂的敏感性增加。生化和基于细胞的测定法用于评估这些种系的影响
抽象的DNA-蛋白交联(DPC)是最普遍和有害的DNA病变之一,是由于暴露于代谢应激,药物或交联药物(如甲醛(FA))而引起的。fa是甲醇代谢,组蛋白脱甲基化,脂质过氧化和环境污染物的细胞副产品。无法修复FA诱导的DPC几乎所有基于染色质的过程,包括复制和转录,导致免疫缺陷,神经变性和癌症。然而,它在很大程度上仍然未知细胞如何维修DPC。由于缺乏鉴定DPC的技术,我们不理解FA的蛋白质类型会阻碍DPC修复的研究。在这里,我们通过将氯化葡萄球菌差异超速离心与HPLC-MAS-MAS光谱法(MS)耦合,从而设计了一种新型的生物测定法,以介绍FA诱导的DPC。使用该方法,我们揭示了FA诱导的人类细胞中FA诱导的DPC的蛋白质组,发现形成DPC的最丰富的蛋白质是PARP1,拓扑异构酶I和II和II和II,甲基转移酶,DNA和RNA聚合酶,组蛋白,组蛋白,以及核糖体蛋白。为了鉴定修复DPC的酶,我们进行了RNA干扰筛选,发现皮瓣核酸内切酶1(FEN1)的下调使细胞对FA过敏。由于Fen1具有5'-FLAP内切酶活性,因此我们假设FA诱导了DPC偶联的5'-FLAP DNA片段,可以通过Fen1处理。的确,我们证明了FA会损坏通过碱基切除途径(BER)转化为5'-FLAP的DNA碱基。我们还观察到受损的DNA碱基与DPC和FEN1共定位。从机械上讲,我们显示了FEN1在体内修复FA诱导的DPC和裂解5'-FLAP DNA底物,这些DNA具有模拟于体外的DPC。我们还发现,FEN1修复酶拓扑异构酶II(TOP2)-DPC,由其抑制剂依托泊苷和阿霉素诱导的诱导的酶促蛋白酶和阿霉素独立于BER途径,而FEN1和FEN1和DPC靶向的蛋白酶sprtn是对两种FA诱导的非Zym Zym Zym Zymations sprapterations spr的可行途径top2-dpcs。值得注意的是,我们发现FA诱导的非酶DPC和酶ToP2-DPC迅速通过聚辅助核糖基化(ParyLation)迅速修饰,这是一种由PARP1催化的翻译后修饰,由PARP1催化的,这是一种由Paryling DNA损伤损害蛋白和DNA Reparion Reparte resation and DNA损伤蛋白的关键DNA损伤效应器和DNA Reparte resation and dna Reparte stotes和DNA Reparte stotes。,我们用HPLC-MS的抗PAR抗体进行了免疫沉淀(IP)测定,并将Fen1鉴定为parylation底物。接下来,我们表明DPC底物的填充信号发出了Fen1,而Fen1的抚养也将Fen1驱动到DPC位点。最后,使用末端ADP-ribose-MS方法的酶促标记,我们将FEN1的E285残基确定为主要的荷置位点,这似乎是FEN1迁移到DPCS所需的。综上所述,我们的工作不仅揭示了FA诱导的DPC的身份,而且还发现了前所未有的PARP1-FEN1核酸酶途径,是一种通用和势在必行的机制,可以修复其他DPC并防止DPC诱导的基因组不稳定。
