摘要:分子和材料的结构决定了它们的功能。了解结构和功能关系是分子和材料科学的圣杯。然而,尽管努力数十年,但具有理想功能的分子和材料的合理设计仍然是一个巨大的挑战。一个主要障碍是缺乏将特定函数归因于特定功能的固有数学特征。这项工作引入了持久的路径拓扑(PPT),以有效地表征从功能单元中提取的定向网络,例如宪法异构体,顺式 - 反式异构体,手性分子,Jahn- teller- teller异构主义和高素质合金催化剂。路径同源性(pH)理论用于破译镜像对称sublattices的作用,从而阻碍了无定形固体中周期性单位细胞的形成。拓扑扰动分析(TPA)提出揭示血液凝结系统中的关键目标。所提出的拓扑工具可以直接应用于分子和材料科学的系统生物学,法学科学,拓扑材料以及机器学习研究。
拓扑材料的特点是具有拓扑非平凡的电子能带结构,从而获得了出色的传输特性。[1–6] 将这些奇异相开发成有用的应用的前景吸引了广泛的努力来识别和分类候选拓扑材料,证据是出现了许多基于电子能带连通性、[7–13] 基于对称性的指标、[7,14–21] 电子填充约束、[7,22,23] 和自旋轨道溢出的理论框架。[24–26] 这些框架有助于预测 8000 多个拓扑非平凡相,[27–34] 这是一片广阔的未开发实验领域。这为开发用于高通量筛选候选材料的互补实验技术提供了强大的动力。当前最先进的技术,如角分辨光发射光谱 (ARPES)、扫描隧道显微镜 (STM) 和
我们考虑了经受连贯驱动器的非线性损耗谐振器的光子晶格,该系统记得其拓扑阶段。最初,该系统在拓扑上是微不足道的。应用额外的相干脉冲后,强度会增加,从而调节系统中的耦合,然后诱导拓扑相变。但是,当脉冲的效果消失时,系统不会返回到微不足道的阶段。相反,它记住拓扑阶段并保持其在脉冲应用过程中获得的拓扑。脉冲可以用作触发拓扑模式的放大的开关。我们进一步表明,扩增发生在不同的频率以及与脉冲的位置不同的位置,表明频率转换和强度转移。我们的工作对于触发主动拓扑光子设备的不同功能很有用。
抽象拷贝数变化(CNV)是染色体结构变化的主要类型,在包括癌症在内的许多疾病中起重要作用。由于基因组不稳定性,可以在癌症等疾病中检测到大量的CNV事件。因此,重要的是要识别疾病中功能上重要的CNV,目前仍对基因组学提出挑战。解决问题的关键步骤之一是定义CNV的影响。在本文中,我们提供了一种基于拓扑的潜在方法TPQCI,以通过整合统计,基因调节关联和生物学功能信息来量化这种影响。我们使用该指标来检测乳腺癌和多发性骨髓瘤中CNV基因组片段的功能富集基因,并发现受CNV影响的生物学功能。我们的结果表明,通过使用我们提出的TPQCI度量,我们可以检测到受CNV影响的疾病特异性基因。TPQCI的源代码在GitHub(https://github.com/usos/tpqci)中提供。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
目的:本研究工作旨在展示在考虑制造参数的情况下对 FDM 虚拟打印的中观结构部件进行拓扑优化的可能性。设计/方法/方法:使用软件 ABAQUS 对 FDM 打印的 3D 部件进行拓扑优化。另一方面,已经实现了使用基于 G 代码文件的脚本的数值方法来创建虚拟模型。然后,根据固体各向同性材料惩罚 (SIMP) 方法对其进行优化,以最小化应变能为目标函数,以 30% 的体积分数为约束。结果:虚拟模型的最终拓扑优化设计与均质部分大致相似。此外,虚拟模型的应变能小于均质部分。然而,虚拟 3D 优化部件体积大于均质部件。研究局限性/含义:在本研究中,由于缩短了模拟时间,我们将研究限制在一层。此外,优化虚拟模型所需的时间过长。在接下来的研究中,我们将优化多层细观结构。 实际意义:我们的研究提供了一种强大的方法来精确优化考虑到制造环境的细观结构。 原创性/价值:在本文中,我们通过一种新颖的方法研究了 FDM 虚拟打印的 3D 部件的拓扑优化潜力。 通过我们的方法,我们能够在考虑制造参数的情况下对 FDM 打印的 3D 部件进行拓扑优化。 关键词:拓扑优化、熔融沉积建模、虚拟 3D 打印部件、SIMP 对本文的引用应按以下方式给出:I. Antar、M. Othmani、Kh. Zarbane、M. El Oumami、Z. Beidouri,FDM 虚拟打印的 3D 部件的拓扑优化,材料与制造工程成就杂志 112/1 (2022) 25-32。 DOI:https://doi.org/10.5604/01.3001.0016.0289
摘要。太赫兹波的控制为下一代传感、成像和信息通信提供了深厚的平台。然而,所有传统的太赫兹元件和系统都存在体积庞大、对缺陷敏感和传输损耗大等问题。我们提出并通过实验证明了拓扑器件的片上集成和小型化,这可能解决太赫兹技术的许多现有缺陷。我们设计和制造了基于谷-霍尔光子结构的拓扑器件,可用于片上太赫兹系统的各种集成组件。我们用拓扑波导、多端口耦合器、波分和回音壁模式谐振器证明了谷锁定非对称能量流和模式转换。我们的设备基于拓扑膜超表面,这对于开发片上光子学具有重要意义,并为太赫兹技术带来了许多特性。
在广泛温度范围内的扩展系数。[2] CFS不仅可以用作有效的热管理材料,以维持具有高热通量的微电源组件的功能和可靠性,而且还用作高性能复合材料,用于对空气空间场中飞行设备的热保护。[3]尽管有广泛的用途,但基于音调的CFS是唯一具有高成本的高度传导性CF的商业物种。[4]作为一种镇压,其他商业板的CF具有强大的机械性能,但由于其有限的石墨结晶度,导热率较差,从而确定了它们作为轻质结构材料的限制应用。[2a,5]在这种情况下,有必要将高度传导纤维的替代来源扩展到唯一的基于螺距的CF之外。[2b,6]一个直观的选择是将基于PAN的CFS转换为高电导传导性的特征,但仍然是一项禁止的任务,这受到线性Poly-Merers 1D拓扑与目标石墨气质的2D拓扑之间的固有不相容性的挑战。[5b,7]
摘要:结果表明,由于其SL 2(c)字符品种与代数表面有关的某些有限呈现的组的表示理论。我们利用代数表面和相关拓扑工具的Enriques -Kodaira分类,以使此类表面明确。我们研究了SL 2(c)角色品种与拓扑量子计算(TQC)的连接,以替代Anyons的概念。Hopf链接H的角色是Del Pezzo表面F H(换向器的轨迹),是我们对TQC的看法的内核。QUTRIT和两Q Q Qubit的魔术状态计算,在我们以前的工作中衍生自从Trefoil结中,可以从HOPF链接看作是TQC。一些两者的bianchi组的特征品种以及奇异纤维的基本组〜e 6和〜d 4包含f h。表面biration等同于k 3表面是其特征品种的另一种化合物。
摘要:拓扑优化已成为轻量化和性能设计的有效工具,尤其是在航空航天工业中。事实证明,它能够满足生产更坚固、更轻便的复杂零件的要求。该技术已证明具有成本效益、提高了有效载荷能力并提高了航空航天领域的燃油经济性,并使结构部件能够在使用更少材料的情况下提供相同或增强的性能。在飞机中,机身和机翼是重要的结构部件。机翼机身耳状连接支架是连接机翼和机身的连接元件。支架的灾难性故障有时会导致飞机结构分离。这项工作专注于飞机机翼机身耳状连接支架的建模、形状优化和分析。该方法涉及使用不同材料组对支架进行建模和形状优化。进行了有限元建模和结构分析,以研究支架上的应力和变形。进行疲劳损伤评估以研究支架在重复循环载荷下的行为。关键词:- 拓扑优化、机翼机身连接支架、疲劳损伤、静态结构、载荷系数、质量减轻。