作者:A Landay · 2021 · 被引用 5 次 — (C) 疫苗和抗病毒药物提供的保护通常针对病原体。相比之下,提供增强免疫力机会的抗衰老产品...
摘要:电网面临着与新连接技术和电力电子相关贡献有关的挑战,包括功率转换器的创新拓扑和先进的功率管理算法。此外,与可再生能源和电动汽车相关的技术有几个共同点,特别是在与电网的接口方面,这使得可以预见电网接口统一解决方案的融合,而不会危及每种技术的功能和附加值。为了实现这一目的,本文提出了一种基于三相结构的统一拓扑,除了与电网协同运行以补偿电能质量问题外,它还可以集成可再生能源和电动汽车。本文的主要贡献在于,只需与电网接口即可涉及智能电网的三个核心特征:可再生能源、电动汽车和电能质量。总体而言,统一拓扑结构在交流和直流接口方面都呈现四象限结构,主要为电网提供多种功能。在交流接口中,该结构以交错模式运行,而在直流接口中,该结构以多级模式运行。介绍了全局控制算法,涵盖了上述技术之间的互连,以及针对每个接口的单独控制算法的实施细节。连接到三相 400 V-50 Hz 电网的实验室原型用于获得最大运行功率 12.5 kW 的实验验证,证实了所提出的统一拓扑的基本优势特性和正确运行。
Nielsen-Ninomiya 定理是高能和凝聚态物理中关于手性费米子在静态晶格系统中实现的基本定理。本文我们扩展了动态系统中的定理,其中包括静态极限中的原始 Nielsen-Ninomiya 定理。原始定理对于块体手性费米子来说是行不通的,而新定理由于动态系统固有的块拓扑而允许它们实现。该定理基于对偶性,可以统一处理周期性驱动系统和非厄米系统。我们还给出了受对称性保护的非手性无间隙费米子的扩展定理。最后,作为我们的定理和对偶性的应用,我们预测了一种新型的手性磁效应——非厄米手性磁肤效应。
d-Wave Systems Inc.(“ D-Wave”)保留其在此文档中的知识产权,此处参考的任何文件及其专有技术,包括版权,商标权利,工业设计权和专利权。D-Wave商标包括D-Wave®,Leap™Quantum Cloud Service,Ocean™,Advance™Quantum System,D-Wave 2000Q™,D-Wave 2X™和D-Wave徽标(“ D-Wave Marks”)。本文档中使用的其他标记是其各自所有者的属性。D-Wave does not grant any li- cense, assignment, or other grant of interest in or to the copyright of this document or any referenced documents, the D-Wave Marks, any other marks used in this document, or any other intellectual property rights used or referred to herein, except as D-Wave may expressly provide in a written agreement.
拓扑优化通过在给定域中最佳分发材料来优化,需要2个无梯度优化器来解决高度复杂的问题。然而,在涉及数百个设计变量或更多涉及的情况下,解决此类问题将需要数百万个有限的4个元素方法(FEM)计算,其计算成本又大且不切实际。在这里5我们报告了一个自我指导的在线学习优化(SOLO),该优化(SOLO)将深度神经6网络(DNN)与FEM计算集成在一起。DNN将目标学习并替换为设计变量的7个函数。少数培训数据是基于DNN的全局最佳预测而动态生成的8。DNN适应了新的培训数据9,并在关注区域提供了更好的预测,直到收敛为止。我们的算法通过合规性最小化问题和流体结构优化问题测试了10个。IT 11
摘要:近年来,航天工业经历了重大变化,这主要是由于私营公司的进入,震动了该行业。这种新情况允许降低传统航天仪器的可靠性,同时减少开发时间和制造量。因此,尽管使用之前在太空中测试过的设备很常见,但由于前面提到的原因,这可能是引入新技术的最佳时机。一项具有巨大潜力的有趣技术是电机应用中的旋转传感器。从历史上看,电阻电位计因其简单性和坚固性而使用最广泛;然而,它有几个缺点。因此,本文的目的是确定一种有趣的旋转传感器。因此,在本文中,研究了不同类型的传感器。然后,我们回顾了有关旋转变压器的文献,以找到最佳拓扑。我们设计并比较了不同的单速绝对位置旋转变压器,以找到提供最佳结果的旋转变压器。在此过程中,设计了一种新颖的旋转变压器拓扑,该拓扑改进了任何其他研究拓扑的性能。
功能性磁共振成像(fMRI)是一种至关重要的技术,可以洞悉人类认知过程。从fMRI测量中积累的数据会导致体积数据集随时间变化。但是,分析此类数据的挑战是由于大脑中信息的表示方式的噪音和人与人之间的变化。为了应对这一挑战,我们提出了一种新颖的拓扑方法,该方法在fMRI数据集中编码每个时间点,作为拓扑特征的持久图,即数据中存在的高维空隙。 此表示自然不依赖于voxel-voxel对应关系,并且对噪声是可靠的。 我们表明,可以将这些随时间变化的持久图聚类以发现参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。 Here, we apply both clustering and tra- jectory analysis techniques to a group of participants watching the movie ‘Partly Cloudy'. 我们观察到大脑状态轨迹以及观看同一电影的成人和儿童之间的整体拓扑活动的显着差异。数据中存在的高维空隙。此表示自然不依赖于voxel-voxel对应关系,并且对噪声是可靠的。我们表明,可以将这些随时间变化的持久图聚类以发现参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。Here, we apply both clustering and tra- jectory analysis techniques to a group of participants watching the movie ‘Partly Cloudy'.我们观察到大脑状态轨迹以及观看同一电影的成人和儿童之间的整体拓扑活动的显着差异。
a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 b 威斯康星大学麦迪逊分校材料科学与工程系,美国威斯康星州麦迪逊 53706 c 威斯康星大学麦迪逊分校格兰杰工程研究所,美国威斯康星州麦迪逊 53706 ⸸ 通讯作者 摘要 拓扑优化 (TO) 与增材制造 (AM) 的结合有可能彻底改变现代设计和制造。然而,制造优化设计的实例很少,而经过实验测试的设计实例就更少了。缺乏验证再加上 AM 工艺对材料性能的影响,使我们对工艺-微观结构-性能关系的理解存在差距,而这对于开发整体设计优化框架至关重要。在这项工作中,使用定向能量沉积 (DED) 和选择性激光熔化 (SLM) 方法对功能设计进行了拓扑优化和制造。这是首次在 TO 背景下直接比较这些 AM 方法。在单轴位移控制拉伸载荷下,研究了 SS316L 和优化部件在制造和热处理条件下的机械性能,并与有限元建模 (FEM) 预测进行了比较。优化样品在试件中提供了压缩和拉伸载荷区域。实验结果表明 FEM 预测较为保守。微观结构分析表明,这种差异是由于增材制造过程中形成的细化微观结构,可增强高应力区域的材料强度。此外,由于晶粒尺寸更细化和位错结构更密集,SLM 样品表现出比 DED 样品更高的屈服强度。TO 结果对 AM 方法、后处理条件和机械性能差异很敏感。因此,通过结合微观结构特征来考虑制造部件中的局部微观结构变化,可以最好地优化用于 AM 框架的 TO。
• 路边空间可灵活分配给行车道、路边停车位、公交车道、PUDO 区域、商业装卸区或其他移动需求(例如人行道、摩托车/自行车共享停车场)。
敏感节点对之间的电荷共享。当入射离子撞击敏感晶体管(例如节点 mn2 中的 PMOS 晶体管)时,一列电子-空穴对会沿入射轨道电离。电离载流子扩散到相邻的晶体管,导致相邻敏感节点之间的电荷收集,如图 3 所示。对于传统的 DICE 触发器,敏感节点对将收集足够的电荷并导致 SEU。对于所提出的 MSIFF,增加的节点间距可有效减少由于复合过程引起的扩散收集。此外,从属锁存器的插入组件也有助于收集额外的载流子 [19]。它将显著降低电离载流子密度并阻止扩散收集过程。因此,敏感节点对不会同时收集足够的电荷,并且所提出的 MSIFF 中不会发生 SEU。
