数字服务提供商需要了解,AI系统带有附加的生命周期,如上所示(10)。数字服务提供商可能不会沿着这一生命周期同样参与,因此可以具有不同的角色和职责。例如,您可能是一家IT公司,专门从事商业用途的模型(例如大型语言模型(LLM)),或者您可能是依靠商业可用AI系统作为您服务的一部分的组织,例如通过聊天机器人。对于数字服务提供商来说,重要的是要了解其AI系统来自何处,产生的依赖性以及他们可以和应该控制的AI生命周期的哪一部分。
摘要:工业控制系统在当今的制造系统中发挥着核心作用。在保持和提高生产能力和生产力的同时,生产系统的复杂性也随之大幅增加,并朝着更加灵活和可持续的方向发展。为了应对这些挑战,需要先进的控制算法和进一步的发展。近年来,基于人工智能 (AI) 方法的发展引起了研究和行业对未来工业控制系统的极大关注和相关性。基于人工智能的方法越来越多地被应用于各种工业控制系统层面,从单个自动化设备到复杂机器的实时控制、生产过程和整个工厂的监督和优化。因此,人工智能解决方案被应用于不同的工业控制应用,从传感器融合方法到新型模型预测控制技术,从自优化机器到协作机器人,从工厂自适应自动化系统到生产监督控制系统。本篇展望论文的目的是概述人工智能方法在不同层次上对工业控制系统的新应用,以提高生产系统的自学能力、整体性能、相关流程和产品质量、资源的最佳利用和工业系统安全性以及对不同边界条件和生产要求的适应能力。最后,讨论了主要的未决挑战和未来前景。
二氧化碳(CO 2)通过矿化捕获,利用和储存(CCU)已被证明可减少独立植物中的温室气体(GHG)排放,而且还可以减少大规模气候供应链中的二氧化碳和储存率(GHG)的排放。然而,通过矿化实施大规模供应链为CCUS实施大规模的CCU,需要大量的金融投资,因此对其经济学有深刻的了解。目前的文献估计了独立植物的CO 2矿化经济学。CO 2矿化工厂具有特定的a)CO 2供应,b)固体原料供应,c)能源供应和d)产品市场,但工厂级成本估计并不能说明大型且潜在的共享供应链。在我们的研究中,我们通过在欧洲设计和分析CCU的成本优势供应链来评估矿化的经济学。我们的结果表明,避免了供应链中各个矿化厂的CO 2E减排成本范围为110至312欧元 /吨。通过矿化而提出的CCUS供应链可以避免欧洲的60吨Co 2e /年以2E减排成本可与CO 2捕获和地质存储相当。此外,我们确定了五个可以为CO 2矿化提供强大业务案例的地点。因此,分析显示了如何将CO 2矿化添加到欧洲的温室气体缓解组合中的途径。
在生成AI的快速发展的领域中,这项工作采取了初步步骤,以建立用于比较图像编辑方法的系统范围。当前,缺乏用于评估IMED编辑任务的定量指标,而新方法主要是定性评估的。我们的方法涉及三个关键组成部分:1)使用gan-Control创建大型合成数据集,该数据集可以生成地面图像,以跨不同面部身份进行一致的编辑; 2)匹配过程,将编辑的图像与相应的地面真相配对; 3)将感知距离指标应用于匹配对。我们通过用户研究和一组仿真实验评估了我们提出的框架的有效性。我们的结果表明,我们的方法可以以与人类判断相符的方式对图像编辑方法进行排名。这项研究旨在为随后的研究中的图像编辑技术建立全面的评估框架奠定基础,并就此主题进行对话。
临床成像工作流的主要重点是疾病诊断和管理,导致医学成像数据集与特定的临床目标密切相关。这种情况导致了开发特定于任务的分割模型的主要实践,而没有从广泛的成像群中获得见解。受到医学放射学居民培训计划的启发,我们提出了向普遍医学图像分割的转变,旨在通过利用临床目标,身体区域和成像方式的多样性和共同点来建立医学图像理解基础模型的范式。div of这个目标,我们开发了爱马仕,一种新颖的上下文 - 学习方法,以应对医学图像segmentation中数据杂基的挑战和注释差异。在五种模式(CT,PET,T1,T2和Cine MRI)和多个身体区域的大量各种数据集(2,438个3D图像)中,我们证明了通用范式比传统范式在单个模型中解决多个任务的传统范式的优点。通过跨任务的协同作用,爱马仕在所有测试数据集中都能达到最先进的性能,并显示出卓越的模型可伸缩性。其他两个数据集中的结果揭示了爱马仕在转移学习,分裂学习和对下游任务的概括方面的出色表现。爱马仕(Hermes)博学的先生展示了一个具有吸引力的特征,以反映任务和方式之间的复杂关系,这与既定的放射学解剖学和成像原则相吻合。代码可用1。
2 我们的共同议程政策简报 7,为了全人类——外层空间治理的未来,联合国大会第 77 届会议,联合国文件 A/77/CRP.1/Add.6(2023 年),可在线获取。
在这项工作中,我们使用噪声中尺度量子 (NISQ) 框架,获得了 Bardeen-Cooper-Schrieffer (BCS) 哈密顿量的间隙。这可能会对超导研究产生有趣的影响。对于这样的任务,我们选择使用变分量子压缩并分析在当前量子硬件上找到能谱所需的硬件限制。我们还比较了两种不同类型的经典优化器,即线性近似约束优化 (COBYLA) 和同时扰动随机近似 (SPSA),并研究在实际设备中使用模拟时噪声存在引起的退相干的影响。我们将我们的方法应用于具有 2 和 5 个量子比特的示例。此外,我们展示了如何在一个标准差内近似间隙,即使存在噪声。
确定爱尔兰的农业,林业和其他土地使用部门的压力占国家温室气体排放的40%以上。《气候行动和低碳发展(修正案)2021年》不迟于2050年实现净零排放的法律结合目标。虽然在能源和工业部门内有明确的技术经济途径,但没有这样的农业部门的途径,其中有限的一氧化二氮和甲烷排放的技术减排方案受到限制。在全球范围内,假定土地管理将提供净碳汇,以抵消农业和其他部门的剩余排放。然而,爱尔兰的土地部门是二氧化碳(CO2)的巨大净发射器,这是由于较大的排水有机土壤和相对于森林收获速率低的造林率。迫切需要确定与净零兼容的潜在农业和土地使用配置。隔离项目为未来的土地使用混合物的外观提供了新的见解。
我们提出了一种基于微型,能量,低成本的单光子凸轮的测量值来重建任意兰伯特对象的3D形状的方法。这些摄像机作为时间解析的图像传感器运行,用非常快速的脉冲脉冲融合了光,并记录了该脉冲的形状,因为它以高时间分辨率从场景中返回。我们提出了模拟此图像形成过程的建模,解释其非理想性,并适应神经渲染以从一组具有已知姿势的空间分布的传感器中重建3D几何形状。我们表明,我们的方法可以从模拟数据中成功恢复复杂的3D形状。我们利用商品代理传感器的测量结果来证明实际捕获的3D对象重建。我们的工作在基于图像的建模和活动范围扫描之间建立了连接,并通过单光子摄像机朝着3D视觉提供了一步。我们的项目网页位于https://cpsiff.github.io/ toug_3d_vision/。
摘要 在计算机视觉和机器人领域,具身代理有望探索其环境并执行人类的指令。 这就需要能够根据第一人称观察充分理解 3D 场景,并将其语境化为语言进行交互。 然而,传统研究更多地侧重于从全局视角进行场景级输入和输出设置。 为了解决这一差距,我们引入了 EmbodiedScan,这是一个多模态、以自我为中心的 3D 感知数据集和整体 3D 场景理解的基准。 它包含超过 5k 个扫描,封装了 1M 个以自我为中心的 RGB-D 视图、1M 个语言提示、160k 个 3D 导向框,涵盖 760 多个类别,其中一些与 LVIS 部分一致,以及具有 80 个常见类别的密集语义占用率。 基于这个数据库,我们引入了一个名为 Embodied Perceptron 的基线框架。它能够处理任意数量的多模态输入,并表现出卓越的 3D 感知能力,无论是在我们建立的两个系列基准测试(即基本 3D 感知任务和基于语言的任务)中,还是在野外。