©作者2025。由牛津大学出版社代表环境毒理学与化学学会出版。保留所有权利。有关权限,请发送电子邮件:journals.permissions@oup.com
微塑料曾经相对不为人知,但现在已成为地方、国家和全球关注的焦点。微塑料颗粒是塑料碎片的一个子集,主要特征是尺寸小于 5 毫米至 1 微米;小于此尺寸的塑料颗粒通常称为纳米塑料颗粒。这些颗粒也可以简称为 NMP(纳米和微塑料)。微塑料颗粒可能是由最初以该尺寸制造的塑料材料排放(初级微塑料)或由较大塑料碎片降解(二次微塑料)产生的。然而,在研究人员开始解决微塑料风险问题之前,您必须了解塑料的制造方式。塑料最初是聚合物,通过施加能量(例如热量)和加入所需的添加剂,塑料材料就形成了。添加剂是故意添加到塑料中的化学物质,以提供适合目的的功能,以提供、改进、修改或保留塑料特性,例如防火和在塑料生命周期内提供灵活性、耐用性或稳定性。塑料中经常含有添加剂,因为如果没有添加剂,塑料材料的应用会受到限制、易碎、可能降解,并且保质期非常有限。正是这种颗粒特性(例如大小、形状、聚合物类型)和化学添加剂的存在,给毒理学家带来了一个相当大的问题。了解微塑料潜在风险的另一个挑战是用作添加剂的潜在化学物质的数量。现有的监管计划提供了大量信息;美国食品药品监督管理局的食品接触通知和毒理学关注阈值模型等计划,加上欧洲化学品管理局的 REACH 注册,都是有价值的暴露和毒理学信息来源。如果没有暴露和毒理学数据,科学家可以求助于框架来预测潜在的暴露和风险。为了降低问题的复杂性,科学家可能会研究人类暴露情况,以筛选出由于暴露潜力低而风险较低的化学添加剂。在本课程中,第一位演讲者将重点介绍直接暴露(例如食品包装)和现有数值生物累积食物网模型修改后的暴露的概率估计建模。第二位演讲者将讨论当传统的暴露和毒性数据尚未开发但已知化学物质的分子结构和化学吨位时,如何使用新开发的框架来估计风险。这些演讲将为与会者提供新的视角,让他们了解毒理学家在研究微塑料及其对人类健康的潜在影响时面临的关键问题。
©作者2025。由牛津大学出版社代表环境毒理学与化学学会出版。保留所有权利。有关权限,请发送电子邮件至:journals.permissions@oup.com。
在纸质科学技术研究所的抽象公报(PaperChem)中索引/摘要;参考书目和地质索引(Georef);农业书目(Agricola);生物学摘要;生物病数据库;出租车国际;剑桥科学摘要的一些摘要,包括生态学摘要,非洲学摘要,污染摘要,风险摘要;化学摘要服务;化学标题;当前内容ASC;当前内容/Agri Bio Env Sci; DCPF摘要杂志(PestDoc);工程索引(compendexplus);环境期刊参考书目;环境摘要; Excerpta Medica; Fishlit/Fisheries评论;食品科学技术摘要(FSTA); INIS ATOMINDEX(INIS);科学引文指数; ISI/Geosci Tech; Scisearch数据;野生动物评论
临床药理学医师咨询服务时间为周一至周五,上午 8 点至下午 5 点。值班医师在 AHS Insite 页面上的 ROCA 中列出。临床药理学咨询也可通过 Netcare 电子转诊流程和 Specialist Link 获得。我们的服务也在 Alberta Referral Directory 中列出。单击此处了解有关该服务的更多详细信息。
估计每μg/kg的95%上限额外额外风险高于零剂量的风险估计值,该剂量与0.0365μg/kg的美国背景剂量相关,其中包括0.02μg/kg - 来自饮食的0.02μg/kg - 来自饮食的天数,以及来自0.0165μg/k的日子(参见至0.0165μg-ke/k k and k。 4.3.4)。b EPA的寿命额外风险每μg/kg天剂量高于背景的剂量越来越高于膀胱高于0.2μg/kg天的非线性(请参阅第4.3.5节)和肺癌(请参阅第4.3.6节)癌症。对于这些健康结果,不应从CSF获得非线性区域的风险估计,而应从这些部分提供的非线性多项式方程中获得。c癌症斜率因子为17.6(mg/kg-day)⁻1(mg/kg-day)和31.7(mg/kg-day)⁻1。d按照氯普伦的毒理学评论中所述计算(美国EPA,2010年),假设正常
ACGIH American Conference of Governmental Industrial Hygienists AIC Akaike's information criterion ALD approximate lethal dosage ALT alanine aminotransferase AST aspartate aminotransferase atm atmosphere ATSDR Agency for Toxic Substances and Disease Registry BMD benchmark dose BMDL benchmark dose lower confidence limit BMDU benchmark dose upper confidence limit BML benchmark concentration lower confidence limit BMCU benchmark concentration upper confidence limit BMDS Benchmark Dose Software BMR benchmark response BUN blood urea nitrogen BW body weight CA chromosomal aberration CASRN Chemical Abstracts Service Registry Number CBI covalent binding index CHO Chinese hamster ovary (cell line) CL confidence limit CNS central nervous system CPN chronic progressive nephropathy CYP450 cytochrome P450 DAF循环系统的DAF剂量测定调节因子DCS疾病DEN二乙基硝基胺DMSO DMSO二甲基硫氧化二甲基二甲基二甲基甲酸DNA DNA脱氧核心酸EPA环境保护剂环境保护局FDA食品和药物管理FEV 1二秒ggd gd gd gd gd gd gd gd gd gd gdm glitem glutem ste转移酶GSH谷胱甘肽GST GST谷胱甘肽-S-转移酶HAWC健康评估工作空间协作HB/G-A动物血液:气体分区系数HB/G-H人体血液人体血液:气体分配系数HEC人类等效浓度HED人类等效剂量剂量剂量英雄健康和环境研究在线在线
在高风险的药物研发领域,高达 92% 的失败率阻碍了从实验室到临床的进程,这主要是由于临床试验中无法预测的毒性和治疗效果不足。FDA 现代化法案 2.0 预示着一种变革性方法的出现,倡导将替代方法与传统动物试验相结合,包括采用人类诱导多能干细胞 (iPSC) 衍生的类器官和器官芯片技术进行细胞检测,并结合复杂的人工智能 (AI) 方法。我们的综述探讨了 iPSC 衍生的临床试验在为心血管疾病研究设计的培养皿模型中的创新能力。我们还强调了 iPSC 技术与 AI 的结合如何加速可行的治疗候选物的识别、简化药物筛选并为更加个性化的医疗铺平道路。通过此,我们全面概述了研究界和制药行业正在探索的 iPSC 和 AI 应用的当前前景和未来影响。
摘要:几个世纪以来,香棍已被广泛用于宗教,文化和国内环境中,燃烧时会发出宜人的香气。虽然他们的香水具有一种平静和精神上的联系感,但燃烧的香气可以将有害物质释放到空气中,这可能会带来健康风险。香棒通常由木材,草药和树脂等天然成分组合制成,但是诸如香水,着色剂和燃烧辅助物等合成添加剂也通常用于增强其外观和性能。被燃烧时,这些添加剂可以释放有毒物质,包括颗粒物(PM),挥发性有机化合物(VOC)和多环芳烃(PAHS)。暴露于这些排放已与一系列健康问题有关,从呼吸道刺激和哮喘到更严重的疾病,例如心血管疾病和癌症。本评论论文研究了香棍的毒理学方面,重点是分析添加剂,产品燃烧及其健康影响。关键字:香棒,健康风险,有毒排放,燃烧副产品,合成添加剂1。引言香已经用于各种目的的不同文化和文明已有数千年的历史,包括宗教仪式,精神实践,净化,芳香疗法,甚至是药用应用。虽然不可否认,虽然象征性和文化的重要性是不可否认的,但越来越多的合成添加剂的使用以及在封闭空间中燃烧的广泛燃烧引起了人们对其潜在健康影响的担忧。与此近年来,法医毒理学已成为评估使用香的潜在风险的重要工具,尤其是与其制造业中使用的添加剂以及在燃烧过程中释放的产品相关的添加剂。a)历史:香的历史可以追溯到远古时代,有证据表明其在埃及,印度,中国和美索不达米亚使用。古埃及人在宗教仪式上使用香并抵御邪灵,而在印度,它成为印度教和佛教仪式不可或缺的一部分。香中的中国文本也提到了它与精神领域进行交流。在中东,经常被燃烧以营造出愉悦的氛围和出于药用目的,甚至在贸易路线中发挥了作用,尤其是将阿拉伯半岛与地中海联系起来的著名的“香气”。的香,进一步强调了其宗教意义。在这些古老的文明中,香是由芳香木材,树脂(例如,乳香和没药)和草药等天然成分制成的,当燃烧时会产生愉悦的气味。这些天然成分因其精神和药用特性而受到评价,并且它们的使用持续了几个世纪。b)现代用法和添加剂:在现代,香气的使用已经超越了宗教和精神目的,成为家庭,办公室,水疗中心和冥想中心的流行物品。
一般LSD(脂肪酸二乙酰胺)是一种强大的致幻剂,以其在服用它的人中的强烈和不可预测的迷幻经历而闻名(1)。用户通常会口服LSD。荷兰的人数从18岁及以上的LSD经验(曾经使用过)的人数从2015年的1.4%上升到2022年的1.9%(2)。lsd主要通过5-HT系统通过5-HT 2A受体的激动作用,从而产生5-羟色胺的神经传递。这是一个神经递质,除其他外心情,睡眠和感觉知觉有助于调节(3)。作用机理比最初想象的要复杂。毕竟,有迹象表明与5HT 1A-,5HT 1B-,5HT 1D-,5HT 1E-,5HT 2B-,5HT 2C-,5HT 2C-,5HT 5A-,5H T6和5H T7受体(4-8)。5-HT系统中的这些变化会导致认知,情绪和意识的变化,这可能导致情绪的巨大变化,感知的显着变化和现实变形。其他实验方法表明,LSD还显示出对多巴胺D1和D2受体的亲和力(4.5)。文献表明,LSD急性效应的持续时间是剂量依赖性的,平均可以持续长达11小时,从摄入后约18至120分钟开始(6)。评估能力也可能受到影响,用户承担潜在危险甚至致命的风险(7)。尽管有可能引起强烈的心理经历,但在标准剂量(50-200μg)服用时,LSD被认为是无毒的,并且在医学上是安全的(6)。由于LSD过量而导致的死亡极为罕见。在大多数情况下,已经报告了严重的健康并发症或死亡率,游戏中还有其他因素,例如同时摄入多种精神活性物质,事故或自杀(6)。