[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。
摘要简介:电子烟是一种尼古丁递送装置,自2003年成立以来,既作为戒烟的方法又是一种娱乐活动。它的吸引力,酌处权和各种口味引起了好奇心,尤其是在青少年和年轻人中。尽管被禁止,但这些设备的商业化引起了人们的关注,尤其是因为没有关于安全,质量和影响的明确证据。目的:阐明使用电子烟的影响可能会对用户的健康产生影响。方法论:这是一项综合评论,采用描述性定性方法,在2023年3月至2023年10月的数据中,在Scielo,PubMed和Lilacs的基础上进行了数据。用英语和葡萄牙语使用了描述符,“电子香烟”,“尼古丁”,“效果”,“健康”,而不是“口服”,而不是“牙齿”,而不是“怀孕”,而不是“戒烟”结果:最初,确定了2,227篇文章,并在既定标准后选择了24项研究。讨论:尽管电子烟显然是无害的,毒性比传统香烟更少,但大多数分析的物品都报告了病理有机修饰,并且在各种身体系统中具有变化,尤其是肺部和心血管的有害关系,以及其他作用,以及其他作用,例如血液动力学,肿瘤性,肿瘤性和毒性。结论:有证据表明,尽管对该受试者的数据有限,但电子烟的使用会造成健康损害。因此,需要更多关于使用电子烟的研究,主要是旨在评估长期影响,安全,调节和公共卫生。关键字:电子烟;尼古丁;效果;健康摘要简介:电子烟是一种尼古丁输送装置,自2003年创建以来,既作为戒烟方法又用于休闲使用。它的吸引力,酌处权和各种口味会引起好奇心,尤其是在青少年和年轻人中。被禁止的,这些设备的营销引起了人们的关注,特别是由于缺乏有关安全,质量和效果的明确证据。目的:阐明电子烟可以对用户健康产生的影响。方法论:这是一种具有定性描述性方法的综合评论,使用Scielo,PubMed和Lilacs数据库进行了从3月至2023年10月进行的数据收集。使用了英语和葡萄牙语的描述符,包括“电子烟,“尼古丁”,“效果”,“健康”,“不包括“口服”,“牙齿”,“怀孕”和“戒烟”。结果:最初,确定了2,227篇文章,并在既定标准后选择了24项研究。讨论:尽管电子烟似乎无害和毒性比传统香烟较小,但大多数分析的文章都报告了病理有机修饰,并且在各种身体系统(尤其是肺部和心血管)中的有害关系以及其他影响以及其他影响例如血液动力学,免疫学,肿瘤和毒理学。结论:有证据表明电子卷烟的使用会损害健康,尽管
3. G æ de P、Oellgaard J、Carstensen B 等人。多因素干预对 2 型糖尿病和微量白蛋白尿患者的寿命延长:Steno-2 随机试验的 21 年随访。糖尿病学。2016;59(11):2298-2307。4. 新兴风险因素协作组织,Di Angelantonio E、Kaptoge S 等人。心脏代谢多种疾病与死亡率的关系。JAMA。2015;314(1):52-60。5. Mosenzon O、Alguwaihes A、Leon JLA 等人。CAPTURE:一项跨国、横断面研究,研究 13 个国家 2 型糖尿病成人心血管疾病患病率。心血管糖尿病。2021;20(1):154。 6. Virani SS、Alonso A、Aparicio HJ 等人。心脏病和中风统计 - 2021 年更新:美国心脏协会的报告。循环。2021;143(8):e254-e743。7. Gyldenkerne C、Knudsen JS、Olesen KKW 等人。全国范围内 2 型糖尿病患者心脏病风险和死亡率趋势:丹麦队列研究。糖尿病护理。2021;2353-2360。8. Davies MJ、Aroda VR、Collins BS 等人。2 型糖尿病高血糖管理,2022 年。美国糖尿病协会 (ADA) 和欧洲糖尿病研究协会 (EASD) 的共识报告。糖尿病护理。 2022;45(11):2753-2786。9. Zelniker TA、Wiviott SD、Raz I 等。胰高血糖素样肽受体激动剂和钠-葡萄糖协同转运蛋白 2 抑制剂在预防 2 型糖尿病主要不良心血管和肾脏结局方面的作用比较。循环。2019;139(17):2022-2031。10. Sattar N、Lee MMY、Kristensen SL 等。2 型糖尿病患者使用 GLP-1 受体激动剂对心血管、死亡率和肾脏结局的影响:随机试验的系统评价和荟萃分析。柳叶刀糖尿病内分泌学。2021;9(10):653-662。11. 美国糖尿病协会专业实践委员会,Draznin B、Aroda VR 等。 9. 药物治疗血糖的方法:糖尿病医疗护理标准-2022。糖尿病护理。2022;45(增刊1):S125-S143。12. Funck KL、Knudsen JS、Hansen TK、Thomsen RW、Grove EL。2 型糖尿病和心血管疾病患者中心脏保护性降糖药物的实际使用情况:2012 年至 2019 年丹麦全国队列研究。糖尿病肥胖代谢。2021;23(2):520-529。13. Hofer F、Kazem N、Schweitzer R 等。冠状动脉疾病患者中钠-葡萄糖协同转运蛋白 2 抑制剂和胰高血糖素样肽-1 受体激动剂的处方模式。心血管药物治疗。 2021;35(6):1161-1170。14. Khunti K、Knighton P、Zaccardi F 等。2 型糖尿病患者降糖疗法处方与 COVID-19 死亡风险:英格兰全国性观察性研究。柳叶刀糖尿病内分泌学。2021;9(5):293-303。15. Thomsen RW、Friborg S、Nielsen JS、Schroll H、Johnsen SP。丹麦 2 型糖尿病战略研究中心 (DD2):丹麦糖尿病护理的组织以及 DD2 研究参与者数据收集的补充数据源。临床流行病学杂志。2012;4-(补充 1):15-19。16. Pottegård A、Schmidt SAJ、Wallach-Kildemoes H、Sørensen HT、Hallas J、Schmidt M。数据资源概况:丹麦国家处方登记处。国际流行病学杂志。2017;46(3):798。17. 世卫组织药品统计方法合作中心。ATC 分类索引与 DDD,2021 年。挪威奥斯陆;2020 年。18. Thygesen LC、Daasnes C、Thaulow I、Brønnum-Hansen H. 丹麦(全国)健康和社会问题登记册简介:结构、访问、立法和归档。 Scand J Public Health。2011;39(7 Suppl):12-16。19. Schmidt M、Schmidt SAJ、Sandegaard JL、Ehrenstein V、Pedersen L、Sørensen HT。丹麦国家患者登记处:内容、数据质量和研究潜力审查。CLEP。2015;449-490。20. Schmidt M、Pedersen L、Sørensen HT。丹麦民事登记系统作为流行病学工具。Eur J Epidemiol。2014;29(8):541-549。21. Rasmussen L、Valentin J、Gesser KM、Hallas J、Pottegård A。丹麦国家处方登记处处方者信息的有效性。Basic Clin Pharmacol Toxicol。 2016;119(4):376-380。
5. 简介 生物学和医学中最常见的细胞表征方法是使用荧光标记(标签)。然而,这是一个缓慢的过程,并且还会使细胞降解,使得它们在后续测试中的使用变得困难或不可能。任何类型的样品(细胞、液体、电子元件等)相对于频率的电行为称为阻抗谱。测量此特性的技术称为电阻抗谱 (EIS)。该技术在生物技术和医学领域有多种用途:毒理学测试[1]-[2]、医学诊断[3]-[6]、细胞特性、细胞活力和浓度的基础研究、组织表征[7]、生物技术过程中的生物质表征[8]-[9]、干细胞研究、药物测试[10]和个性化化学疗法[11]等。由于其应用,它还减少了使用动物进行药物测试的需要。作为荧光标记方法的替代,阻抗光谱是一种低成本、非侵入性的方法,可提供实时数据而不会损害细胞,是改善人类健康的一种有价值且多功能的工具。 [12]。为了充分发挥该技术的潜力,有必要对大量样本进行自动测量,并扩大测量的频率范围。为了满足这一需求,本文提出了一种用于在较宽测量频率范围(1 kHz - 10 GHz)内进行阻抗测量的集成电路设计,其基于以下假设:减小测量电路的尺寸及其与样品的连接长度可以显著减少影响高频测量的不良影响。这种集成电路在后期将能为生物学家和医生带来很大的便利,原因如下:1.它使研究人员能够根据实验的需要选择更多的频率值。这样,他们就可以在特定的低频、中频或高频值以及频率扫描之间进行选择。 2. 高频可以研究在低频下无法观察到的细胞特性,因为细胞膜对测量的影响减少了,因此可以研究细胞内物质和细胞器的特性。 3. 由于电路尺寸允许测量系统位于样品附近,因此可以创建高频、多样品测量系统,这大大降低了影响测量的寄生电效应。商业电池阻抗测量系统对多个样本进行测量,但无论是单个还是多个样本,最高频率通常在100 kHz以下。