摘要:汽车行业中的人工智能(AI)允许汽车制造商通过整合AI驱动的高级驾驶员辅助系统(ADAS)和/或自动化驾驶系统(ADS)(例如Traffiffififififient识别(TSR)系统),从而为智能和自动驾驶汽车提供智能和自动驾驶汽车。现有的TSR解决方案集中在他们认识的某些标志上。出于这个原因,提出了一种TSR方法,其中涵盖了更多的道路标志类别,例如警告,监管,强制性和优先符号,以构建一个智能和实时系统,能够分析,检测和分类为正确类别。提出的方法基于对不同的特征符号检测(TSD)和Traffim符号分类(TSC)的概述,旨在在准确性和处理时间方面选择最佳的特征。因此,提出的方法将HAAR级联技术与深CNN模型分类结合在一起。开发的TSC模型在GTSRB数据集上进行了培训,然后在各种路标上进行了测试。所达到的测试精度率达到98.56%。为了提高分类性能,我们提出了一个新的基于注意力的深卷积神经网络。由于获得的测试准确性和F1测量率分别达到99.91%和99%,因此所达到的结果比其他符号分类研究中存在的结果更好。在Raspberry Pi 4板上评估并验证了开发的TSR系统。实验结果证实了建议的方法的可靠性。
腐败的启示会导致交通犯罪的增加吗?为了解决这个问题,我利用巴西的反腐败计划,Programa defiscalizaçãoemEnses Federativos por sorteiospúblicos,该计划暴露了市政级腐败案件,以研究其对公民遵守交通法律的潜在影响。使用交通犯罪的数据,我发现腐败对违规行为没有影响。无论腐败案件的严重程度,驾驶员的年龄,当地媒体的可用性或腐败政治家是否受到法律惩罚或当选,这一发现保持一致。这些结果表明,遵守交通规则更有可能是由个人风险偏好以及更广泛的社会和文化因素而不是政治腐败驱动的。
摘要:随着加密流量的兴起,传统的网络分析方法变得越来越有效,导致转向基于深度学习的方法。其中,基于多模式的基于学习的分类方法由于能够利用加密流量的各种功能集而提高了分类准确性,因此引起了人们的关注。但是,现有的研究主要依赖于晚期融合技术,这阻碍了数据中深度特征的全面利用。为了解决此限制,我们提出了一种新型的多模式加密流量分类模型,该模型将模态融合与多尺度特征提取同步。具体来说,我们的方法在特征提取的每个阶段进行实时融合方式,在每个级别上增强特征表示,并保留层间相关性,以实现更有效的学习。这种连续的融合策略提高了模型检测加密流量中细微变化的能力,同时促进其鲁棒性和对不断发展网络条件的适应性。对两个现实世界加密的流量数据集的实验结果表明,我们的方法达到的分类精度为98.23%和97.63%,表现优于现有的基于多模式学习的方法。
高级计算中心(C-DAC)的开发中心邀请了印度公司从C-DAC转移技术(TOT)的“兴趣表达”(EOI),并以非专属的方式制造,市场,出售和部署C-V2X硬件适配器,用于交通信号控制器。通过此EOI,由M/S技术促进中心,CDAC,Thiruvananthapuram邀请了密封的H1 BID,来自涉及的著名公司的Thiruvananthapuram,参与了制造,安装和通过技术转移(TOT)来制造,安装和维护交通信号控制器。以下产品由C-DAC开发,由Tihan(技术创新枢纽)的资金(自动导航中心)开发,可供行业转让技术(TOT),以便为各种客户端项目制造,市场和实施。
摘要 - 智能传统信号控制器,将DQN算法应用于传递光策略优化,通过将TRAF-Fimfimals调整到实时交通状态,可以充分地减少交通拥堵。文献中的大多数命题都认为,检测到十字路口的所有车辆都是不现实的情况。最近,新的无线通信技术已通过基础设施对连接的车辆进行了成本范围的检测。只有当前配备的总量的一小部分,可以在低检测率下执行的方法。在本文中,我们提出了一个深钢筋Q学习模型,以优化孤立的交叉点,在具有连接车辆的部分可观察到的环境中。首先,我们在RL框架中介绍了新颖的DQN模型。我们为部分可观察到的环境引入了新的状态表示形式,并为传播信号控制提供了新的奖励功能,并提供网络体系结构和调整的超参数。第二,我们以两个步骤在多种情况下在数值模拟中评估模型的性能。首先完全检测到现有的驱动控制器,然后部分分解,并与互联车辆比例的损失估计值进行部分分解。最后,从获得的结果中,我们定义了可接受和最佳性能水平的检测率。该模型的源代码实现可在以下网址获得:https://github.com/romainducrocq/dqn-itscwpd
1,2,3,4,6学生(CSE)KIIT被认为是大学,印度布巴内斯瓦尔,5名学生(机械)KIIT被认为是大学,印度布巴内斯瓦尔,印度摘要:本文档详细介绍了新颖的智能城市交通管理系统的设计和实施,并实现了一个新颖的智能城市交通管理系统,共同构成了互联网的能力(Intelly of Things of Things and Things and Intelly of Things and Intelly of Things and Intelly of Things and Intell of Intelly(Iot of Things and Intell)和计算机。应对现代城市交通的多方面挑战,包括拥堵,安全问题和监管依从性,该系统采用了混合边缘云建筑。智能物联网设备的分布式网络,包括配备了设备AI处理,LIDAR,雷达和环境传感器的智能相机,可捕获实时流量数据。边缘计算节点在交叉点上进行了战略性部署,进行局部数据分析,从而可以立即做出响应,例如自适应交通信号调整和优先级的紧急车辆移动。同时,云平台汇总了来自所有边缘节点的数据,促进了全面的交通模式分析,预测性建模和全系统范围的优化策略。先进的计算机视觉算法,包括基于Yolov8的对象检测,车道跟踪和行人活动识别,可为交通动态和潜在违规行为提供关键的见解。在实时和历史流量数据上训练的机器学习模型,使系统能够动态调整信号时机和预测拥堵热点。与现有的流量基础架构和用于实时流量信息传播的用户友好的移动应用程序集成也是关键功能。本文档探讨了系统的体系结构,硬件和软件组件的相互作用,通信协议,开发生命周期以及缓解关键挑战(例如可扩展性,安全性和延迟)。简介:城市环境的复杂性日益增加,再加上车辆数量的不断增长,加剧了交通管理的挑战。传统系统通常证明不足以解决当代交通流量的动态和多方面的性质。本文档介绍了一个具有前瞻性的智能城市交通管理系统,该系统利用物联网,计算机视觉和云计算的综合优势来创建一个更聪明,响应和可持续的交通生态系统。核心目标是优化交通流量,改善所有道路使用者的道路安全性,最大程度地减少环境影响,并通过实时交通智能增强交通当局和公众的能力。通过战略性地部署边缘计算资源,该系统实现了关键决策的实时响应能力,而云平台为长期流量优化和战略计划提供了必要的可扩展性和分析能力。以下各节详细介绍了系统的架构,组成部分和实现路线图,强调
摘要:在大都市地区,交叉路口的交通拥堵对效率和安全性构成了重大挑战。本研究提出了一个实时交通管理系统,该系统利用计算机视觉和人工智能来优化基于动态车辆密度分析的交通信号时间。该系统在十字路口使用四架战略性放置的摄像机,从每种方法中捕获实时视频提要。使用广泛采用的计算机视觉库OpenCV进行实时车辆检测和跟踪。通过分析每个相机饲料中的预定义区域(ROI)中的车辆,系统为所有方法计算车辆密度。AI驱动的算法将所有相机的数据集成到动态调整交通信号时机,从而优先考虑具有较高车辆密度的道路的绿灯持续时间。主要目标是增强交通流量,最大程度地减少拥塞并提高整体交叉点效率。实验结果证明了系统的有效性和可行性,突出了其在智能城市基础设施中实施实施的潜力。关键词:计算机视觉,实时车辆检测,数据分析,感兴趣的区域,智能城市基础设施
托马斯·布劳恩(Thomas Braun)是德国马克斯·普朗克(Max-Planck)心脏和肺部研究所的主任,德国贾斯图斯·莱比格大学(Justus-Liebig-University)的医学教授,德国德国的Justus-Liebig-University教授。他在哥廷根和汉堡大学学习医学和哲学,在那里他获得了MD和MD博士学位。 在汉堡和波士顿的博斯顿培训后,在MIT的Whitehead Insite的Rudolf Jaenisch实验室,他于1992年成为Braunschweig技术大学的小组负责人,然后他在1996年在Würzburg大学担任副教授职位。 之后,他被任命为哈雷·维滕贝格大学的完整教授兼生理化学主席。 2004年,他被Max-Planck-Societio招募,担任新成立的Max-Planck-Institute in Bad Nauheim的Max-Planck-Institute and Lung Research。 自2004年以来,他还是德国吉森大学的医学教授。 到目前为止,他已经在包括自然,科学,自然医学,自然免疫学细胞,细胞干细胞,发育细胞,细胞代谢,EMBO J,EMBO J,Circulation,Circ的主要期刊上发表了400多篇论文。 res。 和其他人目前的主要研究重点是推动骨骼和心肌发育,再生和改造的机制。 他在德国和国外的各个委员会和咨询委员会任职。 他是德国国家科学院,利奥波迪纳和欧洲学院的当选成员,并且是几本期刊的编辑委员会成员。他在哥廷根和汉堡大学学习医学和哲学,在那里他获得了MD和MD博士学位。在汉堡和波士顿的博斯顿培训后,在MIT的Whitehead Insite的Rudolf Jaenisch实验室,他于1992年成为Braunschweig技术大学的小组负责人,然后他在1996年在Würzburg大学担任副教授职位。之后,他被任命为哈雷·维滕贝格大学的完整教授兼生理化学主席。2004年,他被Max-Planck-Societio招募,担任新成立的Max-Planck-Institute in Bad Nauheim的Max-Planck-Institute and Lung Research。自2004年以来,他还是德国吉森大学的医学教授。到目前为止,他已经在包括自然,科学,自然医学,自然免疫学细胞,细胞干细胞,发育细胞,细胞代谢,EMBO J,EMBO J,Circulation,Circ的主要期刊上发表了400多篇论文。res。和其他人目前的主要研究重点是推动骨骼和心肌发育,再生和改造的机制。他在德国和国外的各个委员会和咨询委员会任职。他是德国国家科学院,利奥波迪纳和欧洲学院的当选成员,并且是几本期刊的编辑委员会成员。此外,他是几个国家和国际研究联盟的指导委员会,吉森·瑙海姆(Bad Nauheim)的法兰克福(Frankfurt)的心肺研究所主任)。
摘要 - 虽然自动驾驶的能力已迅速发展,但融合到密集的交通仍然是一个重大挑战,但已经提出了许多针对这种情况的运动计划方法,但很难对其进行评估。大多数现有的闭环模拟器依赖于其他车辆的基于规则的控件,这导致缺乏多样性和随机性,因此无法准确评估高度交互式场景中的运动计划能力。此外,传统的评估指标不足以全面地评估密集流量合并的性能。回应,我们提出了一个闭环评估基准,用于评估合并方案的运动计划功能。我们的方法涉及在大规模数据集中训练的其他车辆,具有微观行为特征,可显着提高复杂性和多样性。此外,我们通过利用大型语言模型来评估每种自动驾驶汽车合并到主要道路上来重组评估机制。广泛的实验证明了该评估基准的高级性质。通过此基准,我们获得了对存在方法的评估并确定了常见问题。我们设计的环境和车辆运动计划模型可以通过https://anonymon.4open.science/r/ bench4merge-eb5d访问。
最近,智能运输系统(ITS)已成为应对城市交通管理日益严重的挑战的重要组成部分。随着车辆密度的指数升高和道路安全问题的增加,发展有效且可扩展的交通解决方案已变得必不可少。本文探讨了最先进的计算机视觉技术的整合,以有效地应对这些挑战。交通监控系统的演变:交通监控的根源可以追溯到传统方法,例如手动监视和静态传感器,尽管在特定方案中有效,但在可伸缩性,实时适应性和精度方面有限制。多年来,人工智能和计算机视觉的进步改变了这一景观,从而实现了实时和自动化的交通分析。引入了诸如YOLO(您只看一次)和高级跟踪算法(例如Bytetrack)等深度学习模型的引入进一步提高了流量监控系统的准确性和鲁棒性。Yolov8是Yolo系列中的最新迭代,它带来了改进的对象检测功能,包括更高的精度和更快的推断。Bytetrack是一种尖端的多对象跟踪算法,即使在诸如遮挡和高速运动之类的具有挑战性的条件下,也可以确保跨视频帧的稳定和可靠的跟踪。