连贯的通信正在数据中心域中出现,以支持Traffim的增长。尽管将连贯的通信用于较短的链路距离的优势显而易见,但尚无明确的途径来降低通常与连贯的长途通信相关的成本。由于成本是数据中心互连(DCIS)的主要驱动因素,因此显然需要降低成本解决方案,以解决未来的连贯DCI通信链接。继续使用C波段相干光子学对内部/间的DCI似乎是一个自然的步骤,因为C波段相干链接是长途通信中唯一可行的选择。但是,鉴于它们对色散(CD)的固有敏感性和补偿过滤器的缺点,需要评估替代方法。另一种选择是O波段连贯链接的部署,
摘要:汽车行业中的人工智能(AI)允许汽车制造商通过整合AI驱动的高级驾驶员辅助系统(ADAS)和/或自动化驾驶系统(ADS)(例如Traffiffififififient识别(TSR)系统),从而为智能和自动驾驶汽车提供智能和自动驾驶汽车。现有的TSR解决方案集中在他们认识的某些标志上。出于这个原因,提出了一种TSR方法,其中涵盖了更多的道路标志类别,例如警告,监管,强制性和优先符号,以构建一个智能和实时系统,能够分析,检测和分类为正确类别。提出的方法基于对不同的特征符号检测(TSD)和Traffim符号分类(TSC)的概述,旨在在准确性和处理时间方面选择最佳的特征。因此,提出的方法将HAAR级联技术与深CNN模型分类结合在一起。开发的TSC模型在GTSRB数据集上进行了培训,然后在各种路标上进行了测试。所达到的测试精度率达到98.56%。为了提高分类性能,我们提出了一个新的基于注意力的深卷积神经网络。由于获得的测试准确性和F1测量率分别达到99.91%和99%,因此所达到的结果比其他符号分类研究中存在的结果更好。在Raspberry Pi 4板上评估并验证了开发的TSR系统。实验结果证实了建议的方法的可靠性。
4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。 生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。 Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。 但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。 这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。 今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。 传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。 共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。 计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。 但是,在同一时间范围内,I/O带宽仅增加了30倍。4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。但是,在同一时间范围内,I/O带宽仅增加了30倍。电信号速率的增加需要显着前进才能使信号进入/退出,此外,根据应用程序,根据应用程序,还有一个伴随的挑战,可以进一步将电信号移至路由器或开关的前面板。为了解决这一挑战,该行业将通过共包装光引擎和主要