jbokor@berkeley.edu Spintronics领域涉及对固态设备中的旋转和电荷运输的研究。超快磁性涉及使用飞秒激光脉冲来操纵子秒时尺度上的磁性,包括无螺旋性无依赖性的全光开关。我们通过使用超快光电传输(Auston)开关使用Picsecond电荷电流脉冲结合了这些现象(图1)诱导铁磁GDFECO薄膜磁化的确定性,可重复的超快逆转[1]。使用9 ps持续时间电流脉冲,磁化强度在〜10 ps中反转,比任何其他电气控制的磁开关都要快一个数量级,并且展示了不需要旋转偏光电流或旋转旋转转移/Orbit/Orbit torques的根本新的电气开关机制。(图2)此外,开关所需的能量密度较低,投影仅需4 fj即可切换A(20 nm)3个单元。通过非平衡热激发的这种超快磁化逆转现象主要限于基于GD的Ferrimagnet,例如在图2所示的实验中使用的GDFECO合金。1和2。为了将这种快速开关与读数集成,需要具有高隧道磁力电阻(TMR)的磁性隧道连接。然而,对于使用GDFECO的设备报告的TMR值太小(≈0.6%),用于实际应用[2]。在存在面内对称性磁场的情况下,将电流脉冲应用于重金属/铁磁性薄膜异质结构。因此,切换具有独立光学脉冲的铁磁铁非常有趣,然后可以在高TMR存储器单元中作为存储层实现。We have shown how to transfer the ultrafast switching of GdFeCo to a ferromagnet (in our case Co/Pt multilayers) using Ruderman–Kittel–Kasuya– Yosida (RKKY) exchange coupling mediated HI- AOS of the ferromagnet layer driven by the HI-AOS of the ferrimagnet layer [3, 4].该技术通常适用于其他铁磁体,然后可用于使用高TMR的开关磁性结构状态进行MTJ读数。我们还表明,6-10 ps持续时间电流脉冲可用于直接和确定性地切换通过自旋 - 轨道扭矩(SOT)[5]的铁磁薄钴膜的平面外磁化。取决于相对电流
2023 年 6 月 13 日 — 目的。为批准居住在单一政府宿舍的士兵获得 BAS 权利(含或不含餐食)提供指导...
如今,电子竞技现象无处不在。国际锦标赛和参赛选手让数百万观众激动不已,他们观看电子竞技运动员和他们的团队努力提高水平并超越彼此。为了达到必要的认知和身体最佳状态,并抵消因在电脑或游戏机前训练数小时而导致的一般健康问题,电子竞技运动员需要最佳的认知、身体和心理训练。然而,在电子竞技特定的健康管理方面存在差距,包括预防健康问题和训练这些功能。为了对这一主题做出贡献,我们在本篇小评论中介绍了基于跨学科研究结果的可能途径,为认知、身体和精神更健康、更强大的电子竞技运动员提供整体训练方法。我们讨论了运动游戏作为一种激励和有前途的电子竞技运动员补充训练方法,它同时在有吸引力的游戏环境中结合了身体和认知刺激和挑战。此外,我们提出运动游戏是创新的全身电子竞技锦标赛革命。总而言之,运动游戏为(物理)电子竞技带来了新的方法,这反过来又在不断发展的电子竞技研究和开发社区中引发了新的话题。
本技术手册是在安全和任务保障办公室持续培训计划下开发的。本手册中包含的结构化信息将使读者能够高效、有效地识别和控制所需的技术细节,以确保飞行系统元件在组装操作(地面和太空)期间正确配合。研究了整个联邦政府用于定义和控制硬件和软件技术接口的技术。实际需要有效定义和控制系统接口基本尺寸和公差的技术信息比例很少超过任何接口控制文档的 50%。此外,当前政府的接口控制流程非常耗费纸张。简化此流程可以改善沟通,节省大量成本,并提高整体任务安全性和保障性。本手册的主要目的是确保设备之间接口的格式、信息和控制清晰易懂,仅包含保证接口兼容性所需的信息。重点在于控制接口的工程设计,而不是系统的功能性能要求或接口设备的内部工作。接口控制应在接口元素处进行,除非有例外。本手册有两个重要部分。第一部分“接口控制原则”讨论了如何定义接口。它描述了要考虑的接口类型,并推荐了充分接口控制所需的文档格式。第二部分“流程:通过设计阶段”为接口定义和控制提供了量身定制的指导。
• 美国海军预备役直接委任军官 (DCO)* 计划和演习选项 • 让参加合格医疗/牙科住院医师或奖学金计划的医疗保健提供者有机会: • 委任为选定预备役**医疗或牙科部队军官 • 参与最短的时间承诺,直到计划完成:每季度四次演习,可以通过虚拟方式完成 • 计划完成后,过渡到以美国海军预备役医疗或牙科部队军官的身份全面参与 • 获得预备役演习工资、培训积分和退休积分 • 获得财务、医疗保健和其他奖励
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
MTN、Visafone、Galaxy Backbone、埃森哲、特许人事管理协会、Kimberley Ryan、VT Leasing、Infographics、Netherwood Consulting、Lamid Consulting、African Circle、Grange School、NetServe、拉各斯商学院、Signal Alliance、Covenant University、Weco Systems、Corona Schools、IHS Towers、Rapid Facilities Management 酒店、娱乐、航空和旅游 Air Nigeria、African Sun Hotels、Nike Lake Resort、Ampris Global、Sundry Foods Limited、Food Concepts Plc、Multichoice Government 尼日利亚联邦机场管理局、尼日利亚民航局、尼日利亚航空技术学院、尼日利亚气象局、尼日利亚空域管理局、航空部、国际移民组织 (IOM)
2024 年 8 月 15 日 — 限制使用政策是司令部整体药物滥用政策的一部分。3. 适用性。本政策适用于所有军事和政府部门...