拷贝数变异(CNV)是遗传变异的重要来源,它通过多种机制影响多种经济性状。此外,基因组扫描可以识别许多影响经济性状的数量性状位点(QTL),而全基因组关联研究(GWAS)可以定位与表型变异相关的遗传变异。在本研究中,我们开发了一种称为 GWAScore 的方法,该方法收集 GWAS 汇总数据以识别潜在候选基因,并将 CNV 整合到 QTL 和高置信度 GWAScore 区域以检测影响绵羊生长性状的关键 CNV 标记。我们得到了 197 个与候选 CNV 重叠的候选基因。一些关键基因(MYLK3、TTC29、HERC6、ABCG2、RUNX1 等)显示出比其他候选基因显著更高的 GWAScore 峰值。在本研究中,我们开发了 GWAScore 方法来挖掘候选基因作为绵羊分子育种标记的潜在价值。
主观差异 1 +0.742 (0.47-0.88) +0.520 (0.14-0.77) +0.035 (-0.38-0.44) -0.009 (-0.42-0.4) +0.062 (-0.36-0.46) 级别 +0.742 (0.47-0.88) 1 +0.595 (0.24-0.81) -0.032 (-0.44-0.39) -0.045 (-0.45-0.37) +0.072 (-0.35-0.47) TLX_effort +0.818 (0.61-0.92) +0.648 (0.32-0.84) +0.375 (-0.04-0.68) +0.077 (-0.35-0.47) +0.035 (-0.38-0.44) -0.008 (-0.42-0.41) TLX_心理需求 +0.750 (0.49-0.89) +0.513 (0.13-0.76) +0.319 (-0.11-0.65) +0.075 (-0.35-0.47) +0.062 (-0.36-0.46) -0.006 (-0.42-0.41) TLX_时间需求 +0.669 (0.35-0.85) +0.671 (0.36-0.85) +0.459 (0.06-0.73) +0.053 (-0.37-0.46) +0.038 (-0.38-0.44) +0.105 (-0.32-0.5) TLX_实物需求 +0.266 (-0.16-0.61) +0.181 (-0.25-0.55) -0.042 (-0.45-0.38) -0.539 (-0.78-(-0.16)) -0.456 (-0.73–0.05) -0.304 (-0.64-0.12) TLX_性能 -0.383 (-0.69-0.04) -0.353 (-0.67-0.07) -0.261 (-0.61-0.17) -0.132 (-0.52-0.30) -0.018 (-0.43-0.4) +0.014 (-0.4-0.42) TLX_frustration +0.413 (0.00-0.70) +0.385 (-0.03-0.69) +0.144 (-0.29-0.52) -0.474 (-0.74-(-0.08)) -0.402 (-0.7-0.01) -0.149 (-0.53-0.28)
番茄(Lycopersicon esculentum)通常被认为是植物育种成功的典型,并且通过使用生物技术而有可能进一步证明。对番茄作为基因工程模型系统的兴趣部分是由于过去50年来对Lycopersicon属所做的大量工作。这项工作包括收集乳杆菌及其野生亲戚的种质,创建染色体的添加和易位库存,发现或创建> 1200个单基因突变体(Stevens and Rick。1986)。 从野生种类的抗性基因转移。 为突变体或抗性基因的数量创建了近乎异构的线,以及clas -sical遗传图的发展(Tanksley等,1990)。 具有> 300个标记物,包括突变体,同工酶和抗性基因。 番茄作为研究系统的吸引力也是由于该物种将其用于基因工作的特征。 L. esculentum及其野生亲属是二倍体物种,2n = 24,并且适合局部逻辑研究。 L. esculentum易于自我授粉或交叉,以相对较高的种子组融合。 L. esculentum具有相对较小的基因组(0.7 pg)。 几乎没有重复的基因座(Rick,1971; Tanksley等,1987)。 关于L. esculentum及其野生亲戚的种植,遗传学和生物学的绝佳中心资源是“ The Tomato Crop”(Astherton and Rudich,1986)。 可以在番茄遗传合作社的年度出版报告中找到Lycopersicon可用的植物材料清单。1986)。从野生种类的抗性基因转移。为突变体或抗性基因的数量创建了近乎异构的线,以及clas -sical遗传图的发展(Tanksley等,1990)。具有> 300个标记物,包括突变体,同工酶和抗性基因。番茄作为研究系统的吸引力也是由于该物种将其用于基因工作的特征。L. esculentum及其野生亲属是二倍体物种,2n = 24,并且适合局部逻辑研究。L. esculentum易于自我授粉或交叉,以相对较高的种子组融合。L. esculentum具有相对较小的基因组(0.7 pg)。几乎没有重复的基因座(Rick,1971; Tanksley等,1987)。关于L. esculentum及其野生亲戚的种植,遗传学和生物学的绝佳中心资源是“ The Tomato Crop”(Astherton and Rudich,1986)。可以在番茄遗传合作社的年度出版报告中找到Lycopersicon可用的植物材料清单。在最近的一篇文章中。Hille等。 (1989)总结了在番茄改善中最广泛的术语意义上的生物技术。 而不是在这篇出色的文章中重复材料。 本讨论的重点是概述新兴技术用于番茄改进的能力和潜在价值。 使用分子开发在两种分子技术上使用分子发展中的进展。 使用TI介导的基因转移的RFLP图创建/使用RFLP图以及将外源DNA引入植物基因组。 如果人们还考虑了“生物技术”的标题培养,则也可以考虑原生质体融合和再生的植物改善的可能性。 当前的番茄RFLP图可能是较高的植物基因组中最合理的图(Tanksley等,1990)。 一旦创建。 RFLP地图有几种用于植物改进的用途。 该地图可用于定位和识别感兴趣基因的分子制造商(年轻和坦克。Hille等。(1989)总结了在番茄改善中最广泛的术语意义上的生物技术。而不是在这篇出色的文章中重复材料。本讨论的重点是概述新兴技术用于番茄改进的能力和潜在价值。使用分子开发在两种分子技术上使用分子发展中的进展。使用TI介导的基因转移的RFLP图创建/使用RFLP图以及将外源DNA引入植物基因组。如果人们还考虑了“生物技术”的标题培养,则也可以考虑原生质体融合和再生的植物改善的可能性。当前的番茄RFLP图可能是较高的植物基因组中最合理的图(Tanksley等,1990)。一旦创建。RFLP地图有几种用于植物改进的用途。该地图可用于定位和识别感兴趣基因的分子制造商(年轻和坦克。1989)。 曾经已经确定了紧密连接的分子标记。 标记可用于间接筛选感兴趣的基因。 ,因此促进了所需的主要基因的快速转移,同时最大程度地减少了连锁阻力(Tanksley等。1989; Tanksley,1989)。 RFLP映射可以进一步用于识别与重要定量性状相关的基因组区域。1989)。曾经已经确定了紧密连接的分子标记。标记可用于间接筛选感兴趣的基因。,因此促进了所需的主要基因的快速转移,同时最大程度地减少了连锁阻力(Tanksley等。1989; Tanksley,1989)。RFLP映射可以进一步用于识别与重要定量性状相关的基因组区域。一旦确定了这些区域,就可以使用该信息来促进影响定量特征的基因的转移(Paterson等,1988; Tanksley等人.. 1989)。