2024年9月12日,基于上下文的AI系统,用于自动驾驶中的稳健偏航率和轨迹预测| Lars Ullrich 4
摘要:电垂直起飞和着陆(EVTOL)飞机代表了一种关键的航空技术,以改变未来的运输系统。EVTOL飞机的独特特征包括降低噪声,低污染物的发射,有效的操作成本和灵活的可操作性,同时,这对先进的电力保留技术构成了关键的挑战。因此,由于EVTOL起飞过程中的巨大功率需求,最佳起飞轨迹设计至关重要。传统的设计优化,但是,以迭代方式采用高保真模拟模型,从而产生了计算密集型机制。在这项工作中,我们实施了一个支持替代物的倒数映射优化体系结构,即直接预测设计要求(包括飞行条件和设计约束)的最佳设计。经过训练的逆映射替代物执行实时最佳EVTOL起飞轨迹预测,而无需运行优化;但是,一个培训样本需要在此反映射设置中进行一个设计优化。反向映射的过度训练成本和最佳EVTOL起飞轨迹的特征需要开发回归生成的对抗网络(Reggan)代理。我们建议通过转移学习(TL)技术进一步增强Reggan的预测性能,从而创建一种称为Reggan-TL的方案。在这项工作中,发电机采用设计要求作为输入并产生最佳的起飞轨迹配置文件,而歧视器则在培训集中区分了生成的配置文件和真正的最佳配置文件。尤其是,提议的核根方案利用了由发电机网络和鉴别器网络组成的生成对抗网络(GAN)架构,并具有均一平方误差(MSE)和二进制跨透镜(BC)的组合损失,用于回归任务。综合损失有助于双重方面的发电机培训:MSE损失目标是生成的概况和培训对应物之间的最小差异,而BC损失则驱动了生成的配置文件,以与训练集共享类似模式。我们证明了Reggan-TL在空中客车A 3 Vahana的最佳起飞轨迹设计上的实用性,并将其与代表性替代物的性能进行了比较,包括多输出高斯工艺,条件gan和Vanilla Reggan。结果表明,Reggan-TL仅使用200个训练样本,而最佳参考替代物需要400个样本,达到了99.5%的概括精度阈值。培训费用减少了50%,降低了Reggan-TL实现的概括准确性的标准偏差,证实了其出色的预测性能和广泛的工程应用潜力。
摘要 - 针对分布(OOD)样本的鲁棒性是轨迹预测模型的关键性能指标。但是,最先进(SOTA)模型的开发和排名是由其在单个竞争数据集上的分布(ID)性能驱动的。我们提出了一个OOD测试协议,该协议在两个大规模运动数据集中均质化数据集和预测任务。,我们基于模型的输入和输出侧的代理轨迹和道路几何形状的多项式表示引入了一种新颖的预测算法。随着模型大小,训练工作和推理时间的较小,我们到达Sota Performence进行ID测试,并显着提高OOD测试中的鲁棒性。在我们的OOD测试方案中,我们进一步研究了SOTA模型的两种增强策略及其对模型概括的影响。强调ID和OOD性能之间的对比度,建议将OOD测试添加到轨迹预测模型的评估标准中。
摘要 - 符合条件的合规性对于自动车辆的运动计划至关重要。如果最初计划的轨迹vi-Olates traffirfimful fraffim fraffim fraffim,则建议修复它,而不是完全对其进行补充以节省计算时间。然而,没有轨迹修复框架可以考虑交易参与者之间的相互作用,这可能导致保守的驾驶行为。为了解决这个问题,我们第一次提出了基于游戏理论的互动感知轨迹修复算法。我们的新型算法预测了修复轨迹对其他交通参与者的影响,然后以最佳结果执行轨迹候选者。为了证明我们的维修机制,我们将其集成到一个后退的运动计划框架中。使用CommonRoad基准套件对我们的方法进行评估,表明与互动 - 纳维尔修复策略相关联 - 我们的方法避免了不必要的保守驾驶行为,并实现了更高的维修率。
随着地月空间民用和国防基础设施的不断扩大,有效的轨迹规划技术将成为地月空间探索的关键组成部分。通过在地月空间快速部署资产来应对可能存在的威胁,需要一种能够快速向决策者提供多种可行轨迹选项的方法。本研究展示了一种使用聚类和其他机器学习技术快速生成穿越地月空间的候选轨迹的过程。本文介绍了几种在各种周期轨道之间自主构建转移的示例。本研究侧重于减少用户输入以开发轨迹,而传统方法则需要行业专家进行耗时的分析。与近地动力学相比,敏感的地月动力学是一种新范式,本研究试图利用新技术应对有效评估和生成穿越该空间的可行路径的挑战。
摘要 - 基准测试是评估自主驾驶轨迹预测模型的常见方法。现有的基准测试依赖于数据集,这些数据集偏向于更常见的方案,例如巡航和基于距离的指标,这些指标是通过在所有方案中平均计算得出的。在这样的团之后,就他们如何处理不同的场景以及其产出的可接受和多样化而言,对模型的性质提供了一些深刻的见解。存在许多旨在衡量轨迹的可接受性和多样性的互补指标,但是它们遭受偏见(例如轨迹的长度)。在本文中,我们提出了一种用于评估轨迹预测方法(Crite-ria)的新基准测试范式。特别是我们建议1)一种根据道路的结构,模型的性能和数据正确的数据来提取不同级别的驾驶场景的方法,用于预测模型的细粒度排名; 2)一组新的无偏见指标,用于通过考虑由现实世界驾驶限制的动机,通过考虑道路和运动学的结构来纳入给定场景的特征和可接受性。 3)使用拟议的基准测试,我们使用大规模argoverse数据集对一组代表性的预测模型进行了广泛的实验。我们表明,所提出的基准可以对模型产生更准确的排名,并作为表征其行为的手段。我们进一步进行了消融研究,以强调用于计算拟议指标1的不同元素的贡献。
摘要 - 自主驾驶的轨迹计划是具有挑战性的,因为必须考虑交通参与者的未来未来运动,从而产生巨大的不确定性。随机模型预测控制(SMPC)的计划者提供了非保守计划,但不排除碰撞的(小)概率。我们提出了一种控制方案,该方案在交通情况允许时基于SMPC产生有效的轨迹,如果后者根据预测假设移动,则避免车辆与交通参与者相撞。如果某些交通参与者的行为不预期,则无法提供安全保证。然后,我们的方法产生了一种轨迹,该轨迹使用约束违规概率最小化技术最小化碰撞的概率。我们的算法也可以适应以最大程度地减少碰撞造成的预期伤害。我们对新型控制方案的好处进行了详尽的讨论,并通过CommonRoad数据库的数值模拟将其与先前的方法进行了比较。
摘要:背景:针对被识别为脑瘫(CP)高风险或已诊断出患有其的婴儿的早期干预(EI)对于促进产后脑组织的促进至关重要。这项研究的目的是探索稳态 - 塑性塑性(HEP)方法的有效性,这是一个当代的EI模型,在实验性动物发展中,将丰富环境范式和神经元可塑性的关键原理应用于人类发展的生态学理论中,并在运动发展上与运动序列和tw tw tw tw tw tw Onsem and tw tw Onemia and tw Onemia and tw tw Onemia and tw tw Onemia(tw)。 CP。方法:使用Peabody发育量表-2(PDMS-2)的多个基线评估的随访单案例研究设计的AB阶段,使用了婴儿(TSFI)的感觉功能。非重叠的置信区间分析用于PES-POST PDMS-2分数。使用目标达到量表(GAS)进行了目标和目标的进度。HEP方法干预措施包括在3个月内实施的12个小时的课程,物理治疗师提供了每周基于诊所的父母教练。结果:结果发现,根据2SD频段分析,PDMS-2和TSFI的HEP进近干预措施的响应在A阶段A期间的基线稳定,并有所改善。PDMS-2分数的置信区间也表明HEP干预后有了显着改善。PDMS-2和TSFI的分数均保持一致或在整个随访阶段都显示出改进。气体T得分为77.14,表明婴儿超出了干预目标的预期。结论:尽管我们的发现表明,HEP进近干预有望在具有TAPS和CP的婴儿中增强感觉功能,运动技能结果和父母目标,但需要进一步的研究来验证和更广泛地应用这些结果。
本文介绍了一种新型的自动驾驶汽车(AV)的轨迹预测方法,熟练解决了缺少观察的挑战以及在现实世界驾驶环境中遵守物理定律的需求。这项研究为AVS提供了分层的两阶段轨迹模型。在第一阶段,我们提出了小波重建网络,该网络是一种创新的工具,该工具专业地精心制作,用于重建缺失的观察,并提供与状态模型的可选集成,以增强其稳健性。ad的第二阶段,模型的第二阶段具有波融合编码器,这是一种量子力学启发的创新,用于复杂的车辆相互作用建模。通过合并运动学自行车模型,我们确保我们的预测与逼真的车辆运动学保持一致。融合了我们的方法论进步,我们引入了MocAd-Missing,这是一个全面的现实交通数据集,以及增强的NGSIM和HighD数据集的版本,旨在通过未观察到的环境进行严格的测试。广泛的评估表明,我们的方法明显超过了效果,即使在最多75%缺少观察结果的情况下,也达到了很高的精度。