轨迹预测是Au ausostos驾驶(AD)中的一个基石,在使车辆能够在动态环境中安全有效地导航时发挥了关键作用。为了解决此任务,本文提出了一个新颖的轨迹预测模型,该模型是在面对异质和不确定的交通情况下为准确性而定制的。该模型的核心是特征性的扩散模块,这是一个创新的模块,旨在模拟具有固有不确定性的流量。该模块通过将其注入偏低的语义信息,从而增强了障碍预测准确性,从而富含预测过程。对此进行补充,我们的时空(ST)相互作用模块会导致交通情况对空间和时间段落的VEHILE动力学的细微效果,具有出色的有效性。通过详尽的评估,我们的模型设定了轨迹预测的新标准,实现最新的ART(SOTA)结果(NGSIM),高速公路无人机(Highd)和澳门相互互联的自动驾驶(MOCAD)数据集合(MOCAD)的简短和easated persalal temal spans。这种表现低估了该模型在浏览复杂的交通情况,包括高速公路,城市街道和交叉点的无与伦比的适应性和效率。
本文介绍了用于自动驾驶的轨迹预测模型,重点是动态流量sce-narios中的复杂相互作用,而不依赖高清图。该模型,称为MFTRAJ,利用历史轨迹数据与新型动态图基于行为感知的模块相结合。以自适应结构感知的交互式卷积网络在其核心上捕获了道路使用者的正常和行为特征,并提供了时空的复杂性。通过线性注意机制增强,该模型达到了计算效率并降低了参数开销。对Argoverse,ngsim,HighD和MoCAD数据集进行评估强调了MFTRAJ的鲁棒性和适应性,即使在数据挑战的方案中,也不需要获得其他信息,例如HD MAPS或矢量化映射,甚至超过了数字基准。重要的是,即使在情况下,它仍保持竞争性能,这些竞争性能与大多数现有的最新模型相当。结果和方法表明,自主驾驶轨迹预测的显着进步,为更安全,更有效的自主系统铺平了道路。
超导体中的量子涡流从几十年来的实际观点和基本观点中都引起了人们的持续关注。强化研究已致力于表征超导体的大电流和高磁场应用的默认电流密度[1,2]和静置频率[3]的行为。涡流也引起了人们的注意,因为它被预测可容纳拓扑超振动器表面的主要构粒粒子[4,5],并且最近在基于铁的超导体中提出了它的存在[6-13]。还认为涡流参与了最近公认的非跨脑电图超导体的微观机制,该反应表现出非近代电动传输现象[14-19]和非近代关键电流或磁场[20,21]。已经开发了有关机制的广泛理论研究[22-29]。最近,发现源自涡旋运动的非偏射反应出现在准式,特别是terahertz,频率以肮脏的极限超级导体NBN NBN在超高电的注入下。在这里,超电流充当了反转和时间反向的象征破裂领域,从而产生了巨大的第二季型生成(SHG)[30]。在如此高的频率下,涡流的动力学被证明是由单个涡流核心的运动所主导的,无论涡旋 - 涡流相互作用如何。
摘要。车辆轨迹预测越来越依赖于数据驱动的解决方案,但是它们扩展到不同数据域的能力以及较大数据集大小对其概括的影响仍然不足。虽然可以通过使用多个数据集来研究这些问题,但由于几个差异,例如,在数据for-mats,MAP分辨率和语义注释类型中,这是具有挑战性的。为了应对这些挑战,我们介绍了Unitraj,这是一个综合框架,该框架统一了各种数据集,模型和评估标准,为车辆轨迹预测字段提供了新的机会。特别是,使用Unitraj,我们进行了广泛的实验,并发现当转移到其他数据集时,模型的模型显着下降。但是,扩大数据大小和多样性可以大大提高性能,从而导致Nuscenes数据集的最新结果。我们对数据集特征提供了见解,以解释这些发现。代码可以在此处找到:https://github.com/vita-epfl/unitraj。
采用长期的观点,以确保更健康的建筑环境,更健康的粮食供应和更活跃的人口,同时解决不良健康的社会决定因素,将来会产生可观的股息。但是,目前对预防措施的投资不足。从出生到高中的更健康的孩子投资到灌输更好的健康习惯将带来可观的投资回报。不幸的是,对短期3 - 4年的政治周期的关注使政府始终如一地进行必要规模的投资具有挑战性。我们在将公共,私营和公民部门链接到共同努力的情况下取得了合理的进步,但还有很多事情要做。政府的卫生资源紧张并处于赤字状态,努力跟上对卫生系统的紧急和急剧需求的努力。我们必须改善我们的努力,以创建一种更加协调和综合的方法来预防和管理糖尿病。
摘要 - 虽然高度自动化的驾驶大部分时间都依赖于平稳的驾驶假设,但车辆进行刺激性操纵的可能性很可能是面对意外事件的高动力驾驶的可能性。在这些事件中,车辆行为的建模对于适当的计划和控制至关重要;使用的模型应呈现准确和计算上有效的属性,以确保与车辆动力学的一致性并在实时系统中使用。在本文中,我们提出了一个基于LSTM的混合动力扩展自行车模型,能够针对正常和侵略性情况提供对车辆状态的准确描述。引入的模型用于模型预测路径积分(MPPI)计划和控制框架,用于在高动力场景中执行轨迹。所提出的模型和框架证明了他们计划可行轨迹的能力,即使在处理范围内,也可以确保精确的车辆行为。
摘要 - 合作移动操作是机器人技术中越来越重要的主题:就像人类需要在许多任务上进行协作一样,机器人需要能够一起工作,例如,在非结构化环境中运输重型或笨拙的物体。但是,移动多机器人系统提出了独特的挑战,例如运动计划的更大配置空间,稳定性问题,尤其是对于轮式移动机器人,非全面约束。为了应对这些挑战,我们提出了一个基于用于轮式移动操作的直接转录公式的多机器人双级优化系统。我们的配方使用静态力,计算出较低级别的稳定性目标,以告知较高级别的车轮轨迹计划。这允许有效的计划,同时确保安全执行并改善实际机器人的开环绩效。我们证明了我们的模型能够解决具有挑战性的运动规划任务,并评估其在ClearPath Husky Mobile平台上改进的现实世界的能力。最后,我们将系统与先前呈现的混合真实接口集成在一起。索引术语 - 多种移动机器人或代理商的多数机器人系统,合作机器人,机器人技术和施工中的自动化的路径规划,车轮机器人
摘要众包信息可用于校准自动和自动驾驶汽车的高级驾驶员辅助系统/自动驾驶(ADAS/AD)参数。但是,在车辆网络中学习此类信息是具有挑战性的。一方面,单个车辆收集的数据可能不足以训练大型机器学习模型。另一方面,将原始数据上传到云服务器同样是不切实际的,这是由于符合通信的带宽要求和数据隐私威胁。本文通过应用联合学习(FL)寻求解决方案。我们旨在提高FL算法稳定性以提高预测准确性。因此,我们提出了一种基于方差的和结构感知的FL(VSFL),其中引入了FL服务器的基于方差的模型聚合方法,以进行最佳模型聚合,并为车辆客户提供了一个结构性模型培训方案,以解决统计异质性,而不会损害性能。我们首先为拟议的VSFL提供了理论分析。然后,我们使用合成数据和实际数据验证VSFL算法对车辆轨迹预测的效果。
摘要 — 物理人机交互 (pHRI) 在机器人中起着重要作用。为了使人类操作员能够轻松适应与机器人的交互,应实现 pHRI 中的最小交互力。本文提出了一种 pHRI 框架,使机器人能够自适应地调节其轨迹,以最小化交互力和较小的位置跟踪误差。首先通过性能评估指数更新的交互力来调整机器人的轨迹。然后,基于自回归 (AR) 模型预测人手运动以进一步调整轨迹。第三,开发了一种自适应阻抗控制方法,使用表面肌电图 (sEMG) 信号更新机器人阻抗控制器中的刚度,以实现机器人与环境的顺从交互。该方法允许人类操作员通过交互力、手部运动和肌肉收缩与机器人交互。通过研究所提出方法的性能,交互力降低,并实现了良好的位置跟踪精度。对比实验证明了所提出方法的增强性能。
如今,机器人已部署在许多不同的行业中,例如,作为自动制造系统的一部分[1]。 有很多原因,例如它们的准确性,重复性和(重复)任务执行的速度[2]。 但是,工业机器人的部署增加导致制造工艺消耗的电能增加。 能源成本的上升以及成为能源中立的愿望增加了减少能源消耗的需求[3]。 此外,行业必须适应能源分配和供应的波动,以考虑灵活的能源价格或能源供应限制[4]。 因此,实现最大的能源效率,同时可以灵活地调整能源使用,例如,通过更改生产速度,这是最重要的感兴趣[5]。 存在着各种旨在针对机器人制造系统能源效率的方法。 首先,一个人可以针对制造过程的节能设计,例如,在不使用机器人时避免进行预期任务的超大机器人或减少空闲时间[6]。 其次,人们可以专注于软件端,例如路径优化,计划实现路径的能量最佳轨迹,或在机器人闲置时使用使用的节能备用模式[6]。 我们将重点放在第二类方法上,考虑到给定的机器人,特定任务以及预定义轮廓成功完成任务完成的指定途径。 仍然要计算一种能节能的轨迹,该轨迹实现了利用可用自由度的路径。如今,机器人已部署在许多不同的行业中,例如,作为自动制造系统的一部分[1]。有很多原因,例如它们的准确性,重复性和(重复)任务执行的速度[2]。但是,工业机器人的部署增加导致制造工艺消耗的电能增加。能源成本的上升以及成为能源中立的愿望增加了减少能源消耗的需求[3]。此外,行业必须适应能源分配和供应的波动,以考虑灵活的能源价格或能源供应限制[4]。因此,实现最大的能源效率,同时可以灵活地调整能源使用,例如,通过更改生产速度,这是最重要的感兴趣[5]。存在着各种旨在针对机器人制造系统能源效率的方法。首先,一个人可以针对制造过程的节能设计,例如,在不使用机器人时避免进行预期任务的超大机器人或减少空闲时间[6]。其次,人们可以专注于软件端,例如路径优化,计划实现路径的能量最佳轨迹,或在机器人闲置时使用使用的节能备用模式[6]。我们将重点放在第二类方法上,考虑到给定的机器人,特定任务以及预定义轮廓成功完成任务完成的指定途径。仍然要计算一种能节能的轨迹,该轨迹实现了利用可用自由度的路径。例如,避免高速度和加速度可减少能耗。但是,这导致长