并行和分布式处理的可用性、合理的成本以及数据源的多样性促进了人工智能(AI)的先进发展。人工智能计算环境的发展并不随着社会、法律和政治环境的变化而变化。在考虑部署人工智能时,部署背景以及针对该特定环境的人类智能增强的最终目标已经成为专业、组织和社会的重要因素。在本研究评论中,我们重点介绍了人工智能系统近期发展的一些重要社会技术方面。我们详细阐述了构成增强智能基础的人机交互的复杂性。我们还强调了与这些互动有关的伦理考虑,并解释了增强智能如何在塑造人类工作的未来方面发挥关键作用。
[1] A. Molla和P. S. Licker,“电子商务系统的成功:试图扩展和重新定位DeLone和Maclean Model的成功,” J。Electron。commer。res。,卷。2,不。4,pp。131-141,2001。[2] L. T. Khrais,“智能城市发展中的物联网和区块链”,《国际高级计算机科学与应用杂志》,第1卷。11,否。2,2020。[3] A. S. Sikder,“区块链授权的电子商务:在孟加拉国的数字市场中重新定义信任,安全性和效率。:授权区块链的电子商务,”《国际科学技术杂志》,第1卷1,否。1,pp。216-235,2023。[4] K. L. Kraemer,J。Dedrick,N。P。Melville和K. Zhu,全球电子商务:国家环境与政策的影响。剑桥大学出版社,2006年。[5] L. T. Khrais和O. S. Shidwan,“面对破坏性技术,移动商务及其在相关适用领域的不断变化”,《国际应用工程研究杂志》,第1卷。15,否。1,pp。12-23,2020。
摘要 - 本文探讨了检测与洗钱相关的可疑加密货币交易的方法,利用先进的AI算法。该研究介绍了一个多模型框架,该框架结合了生成对抗网络(GAN),LSTM,基于自动编码器的异常检测模型(ABAD)和其他算法,以应对样品不平衡和嘈杂数据等挑战。基于图形的功能工程和嵌入方法用于构建交易信息图并提取有意义的模式。结果表明,合奏学习方法在检测可疑交易时显着优于单个模型和基于规则的传统系统。尽管取得了成功,但仍然存在不平衡的数据集,噪音和有限的关系特征等挑战。未来的研究建议通过图神经网络和复杂的基于网络的方法来增强模型性能。这项工作强调了机器学习模型的可扩展性和适应性,以解决加密货币洗钱的不断发展的复杂性。
摘要:自主代理代表了互联网的不可避免的演变。当前的代理框架不会嵌入代理到代理交互的标准协议,而将现有代理与同行隔离。作为知识产权是由代理商摄入和生产的本地资产,真正的代理商经济要求代理商为代理提供一个普遍的框架,以互相约束合同,包括交换有价值的培训数据,个性和其他形式的知识产权。纯粹的代理交易层将超越多代理相互作用中人类中间人的需求。知识产权代理交易控制协议(ATCP/IP)引入了一个无信任的框架,用于通过可编程合同之间交换代理之间的IP,使代理商能够在故事区块链网络上启动,交易,贸易,借用,借用和销售代理商与代理商的合同。这些合同不仅代表了可审核的OnChain执行,而且还包含一个法律包装,允许代理商在偏僻的法律环境中表达和执行其行为,从而为代理人创造法律人格。通过ATCP/IP,代理商可以自主将其培训数据出售给其他代理商,许可证机密或专有信息,根据其独特技能协作,所有这些都构成了新兴的知识经济。
全球环境设施(GEF)和世界银行是“保护区项目(GEF 7)(GEF 7)的5年“催化融资和能力催化融资和能力”,由林业,渔业和环境部(DFFE)与南非国家生物多样性研究所(Sanbi)(Sanbi)(Sanbi)(Sanbi)(Sanbi)(Sanbi)(Sanbi)(Sanbi)(Sanbi)合作实施。子执行机构。该项目被称为生物多样性经济项目,旨在解决受保护区及其周围地区及其周围的生计选择有限的发展限制(PAS),农村经济中的不平等,这是该国生物多样性经济的未实现的潜力,包括未涉及的保护领域的扩展和保护国家和保护区和保护区和保护措施的机会。该项目的设计建立在南非的国家生物多样性经济战略上,该战略旨在平衡生物多样性和自然资源保护与可持续用途的经济发展和公平的利益分配。“催化融资和生物多样性经济围绕受保护区的生物多样性经济”的重点是实施生物多样性管理,作为扩大南非保护区网络的一种方法,并提高土地所有者管理其土地生物多样性的能力。生物多样性管理还可以通过刺激当地和农村经济的能力来支持实施国家发展计划,例如生物多样性经济。GEF 7项目具有项目终止开发目标指标和目标,以利用野生动植物行业的公共和私营部门资源为3,750,000美元。目前存在一些挑战,这些挑战会影响南非社区保护计划和生物多样性经济计划的有效实施。这样的挑战是对生物多样性保护领域可用商机的能力,理解和知识不足。公共土地所有者仍然无法获得技术培训,金融,指导,市场,以及将其生态旅游,野生动植物和生物培训业务整合到现有的生物多样性经济价值连锁店中。在GEF7项目生物多样性经济节点中,社区面临着高失业水平,历史上被排除在接受培训,金融和市场之外。要应对这一挑战,需要进行交易咨询服务,以确定可行的商机和模型,这些商机和模型直接适合在这些生物多样性经济节点中转变和增长的生物多样性经济价值链,并有望在当地经济中效应乘数。这将需要与公共土地所有者建立密切的工作关系,以解锁财务机制,能力和业务发展技能,以鼓励对生物多样性相关的更多投资
我们解决了为经典广播渠道编码的问题,该问题需要通过在广播频道上发送固定数量的消息来最大化成功概率。对于[1] a(1- e-e-1)在多项式时间内运行的[1] A(1- e-e-1)中发现的Barman和Fawzi的,Barman和Fawzi 表明,实现严格的更好近似值率是NP-HARD。 此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。 自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。 在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。 对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。 最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。,Barman和Fawzi 表明,实现严格的更好近似值率是NP-HARD。 此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。 自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。 在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。 对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。 最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。表明,实现严格的更好近似值率是NP-HARD。此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。
您账户中的资金可能无法立即使用。资金存入您的账户后,您可能需要等待一段时间才能使用。例如,当有人向您的账户存钱、您存入支票或在无法以电子方式处理交易的邮局存款时,我们可能会冻结资金。如果我们允许您提取未清算的资金,但随后存款仍未清算,我们会将其从您的账户中扣除。例如,如果我们在支票清算之前将存入支票的资金作为“可用资金”提供给您,但随后该支票仍未清算,我们会将其从您的账户中扣除。这可能会导致您的账户透支,并且您可能需要支付透支费和利息(如适用于您的账户)(请参阅 3.1 和 3.2)。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。2498-2512,文章ID:IJCET_16_01_178在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue = 1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_1_178©iaeme Publication