今天,比以往任何时候都需要科学来改善我们的日常生活,具体来说,材料科学必须应对有关人类重大问题的新挑战,包括在医学,能源储能和运输,农业和环境领域的突破解决方案。此外,必须使用符合可持续发展的方法以及循环经济的方法来实现这一点。这些不断增长的要求导致某些技术因其碳足迹,化石燃料的减少,元素的稀有性以及它们从矿山到生命的尽头的平衡而被重新考虑,这是所谓的生命周期评估在使用期间与可持续发展相结合的。因此,作为科学家,我们必须考虑这些标准,因为我们正在创建明天的材料。迫切需要基础研究,通过尽快从概念证明到原型制造业,将其成功培养到当前技术中。由于其反应性,分层材料以及更普遍的互化化合物在许多领域都引起了人们的极大兴趣,例如催化剂,光物理过程,电子,能量,能量,药物脱粒,生物材料,涂料,涂料,复合材料,作为聚合物填充物和
摘要 随着技术的快速变革,人工智能 (AI) 和机器学习 (ML) 在金融领域的融合正在颠覆数十年来遵循的整个生态系统和运营。当前的情况是,金融机构越来越多地以数据为驱动做出决策,它们渴望实现自动化,同时降低风险。金融机构中受到严重影响的部分包括零售银行、财富管理、公司银行和支付生态系统。解决方案范围从客户入职到欺诈检测和预防,再到增强客户服务。金融机构正在跨越式地将人工智能和机器学习融入主流应用,并通过先进的预测分析、扩展个性化的客户体验和自动化来提高运营效率,以最大限度地降低欺诈检测技术的风险。然而,随着人工智能和机器学习的采用,金融机构也必须通过建立强大的治理框架和负责任的人工智能实践来应对道德和监管挑战。关键词:人工智能、机器学习、零售银行、预测分析、欺诈检测、客户体验、道德考量、监管挑战
ChatGPT、Gemini 和 Llama 等大型语言模型 (LLM) 将彻底改变工程流程,电子(系统)设计自动化 (EDA) 可能会受到深远影响。现代电子系统设计领域的特点是极其复杂,从嵌入式系统软件/硬件协同设计的复杂性到十亿晶体管规模的集成电路优化。这种复杂性,再加上对缩短上市时间的迫切需求,为自动化改进设计流程提供了无数机会。LLM 已经在这一领域取得了重大进展,并可能在未来改变 EDA 领域。
在我们当前的快速技术发展时代,确保数字交易的安全性和完整性已成为关键问题。我们为保护这些交易所依赖的传统方法越来越超过网络威胁的复杂频率和频率。这项新兴的挑战需要创新的解决方案,这是区块链技术作为一种开创性和变革性的方法发挥作用的地方。区块链技术从根本上是分散和分布式分类帐系统。此结构提供了特殊的安全功能,这些功能对于保持交易记录的真实性和不变性至关重要。与传统的集中式系统不同,区块链的分散性质意味着交易记录不是存储在一个位置,而是在计算机网络中存储。这种分散使黑客操纵或破坏数据变得更加困难,从而确保更高的安全性。区块链技术的核心优势之一在于它使用先进的加密技术。密码学是通过将信息转换为安全格式来确保信息的实践,除了那些拥有特殊知识(通常称为钥匙)解密的人之外,任何人都无法阅读。区块链使用加密算法来保护交易数据,这使得未经授权的各方更难更改或伪造记录。此加密主链可确保一旦将交易记录在区块链上,就无法更改,从而保留其完整性。区块链的另一个关键方面是其共识驱动的方法。共识机制是区块链网络中所有参与者遵循的协议,以同意交易的有效性。比特币使用的最常见的共识机制是工作证明(POW),涉及解决复杂的数学难题以验证交易并将其添加到区块链中。其他机制,例如股份证明(POS)和授权的股份证明(DPO),提供了其他方法来达成共识,通常以更高的效率和较低的能耗。这些共识协议对于维持区块链的分散性质至关重要,因为它们确保没有一个实体可以控制整个网络。
神经体系结构搜索(NAS)是一座跨性别的桥梁,连接了计算智能和机器学习社区。通过自动化设计神经网络的复杂过程,NAS优化了模型体系结构并增强了各种应用程序的性能。在过去十年中,这种融合导致了这两个领域的显着进步。传统上,NAS算法是根据不同的搜索方法分类的,例如增强学习,基于梯度的方法和进化计算。但是,机器学习的快速发展正在重塑NAS景观,引入了超越这些类别的新技术。在这些新兴技术中,大型机器学习模型(LMM)在该领域的重大进步。lmms是具有大量参数和复杂体系结构的复杂机器学习模型,使它们能够处理大型数据集并执行复杂的任务。这些模型通常是预训练的,并具有多种类型,包括用于文本处理的大型语言模型和用于处理多种数据类型(例如文本,图像,音频和视频)的大型多模式。文献中的最新研究表明,LMMS和NAS可以通过几种方式相互作用,为有希望的研究方向铺平了道路。一些极有前途的研究方向的一些重要例子,这些指示可能代表NAS的未来:
如果已发表的文章包含无效或不可靠的结果或结论、已在其他地方发表或违反行为准则(包括研究或出版道德),则可能会被撤回。如果个人认为已发表的文章应该撤回,我们鼓励他们联系期刊编辑部,详细说明他们的顾虑。主编将进一步调查并联系已发表文章的作者征求他们的意见。如果合著者对撤回意见有分歧,主编可以咨询编辑委员会或外部同行评审员以寻求建议。如果发表了撤回声明,任何持不同意见的作者都会在文中注明。
1.6这些条款,您(代表您自己或代表您的基础本金)进行的任何FX交易以及根据本条款提供给您的服务应受适用的法规(包括无限制的EMIR)的约束,以便如果这些条款和任何此类适用法规之间的任何冲突,后者将盛行。在不偏见上述句子的情况下,这些条款应遵守任何现有的主协议,确认或任何补充条款。在我们涉及任何补充条款,任何现有的主协议或任何单独的条款或与您的任何单独的条款或单独的协议方面以及这些条款的内容与这些条款的内容相冲突,然后任何此类补充条款的内容,任何现有的主协议或任何单独的协议或任何单独的条款或单独的协议应在此类条款中均不在此类条款中均不在范围内允许任何范围均无范围。
随着量子计算领域的发展,传统加密方法(用于保护大量敏感数据)的破坏已成为迫在眉睫的威胁,而主要基于数学复杂性的传统加密技术可能不再适用于量子霸权时代。这项研究系统地分析了当前加密标准在先进量子计算能力面前的脆弱性,特别关注 RSA 和 AES 等广泛使用的加密协议,这些协议是现代网络安全的基础。该研究采用 SmartPLS 方法,模拟了量子计算能力与现有加密技术稳健性之间的相互作用,包括模拟对样本加密算法的量子攻击以评估其量子抗性。研究结果表明,量子计算有能力在未来几十年内显著破坏传统加密方法,其中 RSA 加密显示出相当大的脆弱性,而 AES 需要更大的密钥大小才能保持安全性。本研究强调了开发抗量子加密技术的紧迫性,这对于保障未来数字通信和数据完整性至关重要,并提倡密码研究和实践的范式转变,强调“抗量子”算法的必要性。它还有助于制定量子时代的网络安全战略规划,并使用 SmartPLS 提供方法框架,以进一步探索新兴技术对现有安全协议的影响。