John V. Pluvinage 1,2 * *,Thomas NGO 1,2,Camille Fouassier 1,2,Maura McDonagh 1.2,Brandon B. Holmes 1,2,Christopher M. Bartley 2.3†。 Bondansky 6,Vincent Pai 7,Sam Hinman 7,Ava Aslanpour Ava 7,Adrian 1.2,Celses C. Zorn 8,1,2,Michael S. Haney 10,Way C Cree 1.2,Stephen L. Hauser 1.2,William SeeleyWells 11,Serena Spudich 12,Shilli Farhadian 13,Nath 18,Sea 19,Eoin P. Flanagan 20,Ari J. Green 1.2,Ralph Green 21,Joseph L. Derisi 7.22,Samuel J. 愉悦1.2,迈克尔·R·威尔逊1.2 *Wells 11,Serena Spudich 12,Shilli Farhadian 13,Nath 18,Sea 19,Eoin P. Flanagan 20,Ari J.Green 1.2,Ralph Green 21,Joseph L. Derisi 7.22,Samuel J. 愉悦1.2,迈克尔·R·威尔逊1.2 *Green 1.2,Ralph Green 21,Joseph L. Derisi 7.22,Samuel J.愉悦1.2,迈克尔·R·威尔逊1.2 *
摘要:量子计算正在成为一种新的计算范式,有可能改变包括量子化学在内的多个研究领域。然而,当前的硬件限制(包括有限的相干时间、门不保真度和连通性)阻碍了大多数量子算法的实现,需要更具抗噪声能力的解决方案。我们提出了一种基于跨相关 (TC) 方法的显式相关 Ansatz,以直接针对这些主要障碍。这种方法无需任何近似,将波函数中的相关性直接转移到哈密顿量中,从而减少了使用嘈杂的量子设备获得准确结果所需的资源。我们表明,TC 方法允许更浅的电路并改善了向完整基组极限的收敛,在化学精度范围内提供能量以使用更小的基组进行实验,从而减少量子比特。我们通过使用两个和四个量子比特分别计算氢二聚体和氢化锂的键长、解离能和振动频率,接近实验结果,从而展示了我们的方法。为了展示我们方法的当前和近期潜力,我们进行了硬件实验,结果证实 TC 方法为在当今的量子硬件上进行精确的量子化学计算铺平了道路。
城市具有将其能源部门转变为低碳排放的全电动部门的重要动机。但是,在尝试实施这种更改时,它们经常遇到许多障碍。例如,尽管城市地区的能源需求密度最高,但城市通常缺乏安装额外的能源产生和/或长期持续储能系统的空间。城市还存在现有的环境问题,从能源(例如,灰尘,废热或噪声污染),使居民对能源基础设施的发展敏感。利用常规来源的电力,例如天然气,生物量和水力发电,通常与城市地区距离,这也使城市更容易受到供应干扰的影响。城市的一种有希望的去碳化能源选择着重于其供暖和冷却需求,该需求占美国的三分之一和欧洲能源消耗的一半(包括干燥,巴氏杀菌等工业过程。; Jadun等人,2017年;欧盟委员会2022)。如果地热直接使用技术可以满足加热和冷却载荷,则可以大大减少对新电源的需求。尽管地热能源作为城市/社区尺度的供暖和冷却资源具有证实,但目前它只是供暖和冷却领域中的利基资源,尽管具有未来增长的巨大潜力。投资的主要驱动因素是在可再生能源生产,更高的收入和通过网格产生的能源分配的努力方面的更大政治利益所代表的。从历史上看,重点一直放在可钻探深度下需要更高温度(大于90°C)资源的地热发电潜力上,但是潜在的可行区域在地理上受到限制,并且通常从城市中心远离。相比之下,低温(小于90°C)地热资源几乎可以直接用于加热和冷却,并且在城市/郊区环境中具有成本效益。此外,可再生电源的突出源增加,例如风能和太阳能在城市规模的电网上,引起了人们对储能问题的新紧迫性。地下热量储存(UTE),其中剩余或废热的地下供以后使用,可以提供长期持续的储能解决方案。
1 布尔诺理工大学微电子系,Technick á 10, 601 90 布尔诺,捷克共和国 2 布拉格捷克技术大学生物医学工程学院,n á m. S í tn á 3105, 272 01 克拉德诺,捷克共和国 3 国防大学电气工程系,Kounicova 65, 662 10 布尔诺,捷克共和国 4 拉卡邦国王技术学院工程学院电信工程系,曼谷 10520,泰国 5 琴斯托霍瓦理工大学电气工程系,42-201 琴斯托霍瓦,波兰 6 库尔德斯坦大学电气工程系,萨南达伊 66177-15175,伊朗 7 斯洛伐克理工大学电气工程与信息技术学院,81219 布拉迪斯拉发,斯洛伐克 * 通信地址:khateb@vutbr.cz
摘要 - 神经编码,包括编码和解码,1是神经科学的关键问题之一:2大脑如何使用神经信号将感觉感知3和运动行为与神经系统联系起来。然而,其中大多数研究仅旨在处理神经系统的类比信号5,同时缺乏生物6神经元的独特特征,称为Spike,这是神经计算的基本信息7单元,以及8个脑氨基素界面的基础。针对这些局限性,我们构成了一个转码框架,将多模式感觉10信息编码为神经尖峰,然后从11个尖峰中重建刺激。可以将感官信息压缩为10%的神经峰值,但通过重建100%的信息100%。我们的框架不仅可以可行,14个准确地重建动态视觉和听觉场景,15,还可以重建功能性磁性16共振成像大脑活动的刺激模式。重要的是,它具有各种类型的人工噪声18和背景信号的噪声免疫的17种能力。所提出的框架提供了19种有效的方法来以高通量方式执行多模式特征表示和20种重建,在嘈杂的环境中,有效的神经形态计算的潜在用法21。22
1。Psychalinos,C.,Kasimis,C。和Khateb,F。(2018)。使用单个输出操作式传感器管放大器多输入单输出通用双Quad滤波器。AEU International电子与通信杂志,93,360-367。 https://doi.org/10.1016/j.aeue.2018.06.037 2。Bano,S.,Narejo,G。B.和Shah,S。U. A. (2019)。 低电压单端单端操作性转导放大器用于低频应用。 无线个人通讯,106(4),1875- 1884年。 https://doi.org/10.1007/s11277-018-5726-1 3。 Ali,H。K.和Abdaljabar,J。S.(2017)。 使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。 欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。 Mathad,R。S.(2014)。 使用操作转导扩展fir的低频滤波器符号。 IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750Bano,S.,Narejo,G。B.和Shah,S。U.A.(2019)。低电压单端单端操作性转导放大器用于低频应用。无线个人通讯,106(4),1875- 1884年。 https://doi.org/10.1007/s11277-018-5726-1 3。Ali,H。K.和Abdaljabar,J。S.(2017)。 使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。 欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。 Mathad,R。S.(2014)。 使用操作转导扩展fir的低频滤波器符号。 IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750Ali,H。K.和Abdaljabar,J。S.(2017)。使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。Mathad,R。S.(2014)。使用操作转导扩展fir的低频滤波器符号。IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。Rezaei,F。和Azhari,S。J.(2011)。超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。Abuelma'atti,M。T.和Quddus,A。(1996)。程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
交替的当前AC传输PPTN AC传输公共政策传输需求需求(纽约独立系统运营商董事会董事会董事会董事会。CECPNCECPN环境兼容性和公共需求证书中央哈德逊中央哈德逊中央哈德逊天然气公司Edison Edison Edison Edison Edison Edison con Edison con con new York Edison new York纽约州INC. INC.纽约州公共服务员工Meg k. Meg k. Meg k. Meg k. k. k. k. Niagara Mohawk Power Corporation d/b/a National Grid NYCRR New York Codes, Rules and Regulations NYES Project or Project New York Energy Solution Project NYISO New York Independent System Operator, Inc. NYSRC New York State Reliability Council OATT NYISO's Open Access Transmission Tariff O&R Orange and Rockland Utilities, Inc. PPTPP Public Policy Transmission Planning Process PSL New York State Public Service Law ROW right(s)-of-way SECO变电站工程公司Transco New York Transco LLC交替的当前AC传输PPTN AC传输公共政策传输需求需求(纽约独立系统运营商董事会董事会董事会董事会。CECPNCECPN环境兼容性和公共需求证书中央哈德逊中央哈德逊中央哈德逊天然气公司Edison Edison Edison Edison Edison Edison con Edison con con new York Edison new York纽约州INC. INC.纽约州公共服务员工Meg k. Meg k. Meg k. Meg k. k. k. k. Niagara Mohawk Power Corporation d/b/a National Grid NYCRR New York Codes, Rules and Regulations NYES Project or Project New York Energy Solution Project NYISO New York Independent System Operator, Inc. NYSRC New York State Reliability Council OATT NYISO's Open Access Transmission Tariff O&R Orange and Rockland Utilities, Inc. PPTPP Public Policy Transmission Planning Process PSL New York State Public Service Law ROW right(s)-of-way SECO变电站工程公司Transco New York Transco LLC
本文描述的功能、系统要求和/或与第三方产品的兼容性如有变更,恕不另行通知。ARRIS、ARRIS 徽标、Auspice®、C3™、C4®、C4c™、Cadant®、C-COR®、CHP Max5000®、ConvergeMedia™、Cornerstone®、CORWave™、CXM™、D5®、Digicon®、ENCORE®、Flex Max®、HEMi®、Keystone™、MONARCH®、MOXI®、n5®、nABLE®、nVision®、OpsLogic®、OpsLogic® Service Visibility Portal™、PLEXiS®、PowerSense™、QUARTET®、Regal®、ServAssure™、Service Visibility Portal™、TeleWire Supply®、TLX®、Touchstone®、VIPR™、VSM™ 和 WorkAssure™ 均为 ARRIS Group, Inc. 的商标。本文件中可能使用其他商标和商品名称来指代拥有这些商标的实体及其产品的名称。ARRIS 放弃对他人商标和名称的所有权。© 版权所有 2010 ARRIS Group, Inc. 保留所有权利。未经 ARRIS Group, Inc. 书面许可,严禁以任何形式复制。如需更多信息,请联系 ARRIS。