摘要 转录适应是最近描述的一种现象,其中一个基因的突变会导致相关基因(称为适应基因)的转录调节。在分子水平上,有人提出,突变的 mRNA(而不是蛋白质功能的丧失)激活了这种反应。虽然已经在斑马鱼胚胎和小鼠细胞系中报道了几例转录适应的例子,但尚不清楚这种现象是否在后生动物中都观察到。我们在此报告了秀丽隐杆线虫的转录适应,并发现该过程需要与突变 mRNA 衰变有关的因子,就像在斑马鱼和小鼠中一样。我们进一步发现了对 Argonaute 蛋白和 Dicer 的需求,这些因子与小 RNA 成熟和转运到细胞核中有关。总之,这些结果为秀丽隐杆线虫的转录适应提供了证据,这是一种进一步研究潜在分子机制的有力模型。
Motu Profiler或Short Motus是一种软件工具,可以从分类学组成,代谢活性成员的丰富性以及菌株群体的多样性方面对微生物群落的生产。为此,它维护了单拷贝系统发育标记基因序列的数据库,该数据库被用作参考,简短读取的元基因组和元文字读数被映射为识别和定量微生物分类群。在这里,我们描述了两个基本协议中最常见的MOTU剖面用例。其他支持协议提供有关其安装和深入指南的信息,以调整其设置,以增加或降低检测和量化分类单元的严格度,以及用于自定义输出文件格式。提供了解释分析结果的指南,以及有关独特功能,方法学细节和工具的开发历史的其他信息。©2021作者。Wiley Perigonicals LLC发布的当前协议。
开发,9。Homebank(https://homebank.talkbank.org)用于家庭录音,10。Phonbank(https://phon.talkbank.org)用于语音发展,11。rhdbank(https://rhd.talkbank.org)在右半球损害中使用语言,12。samtalebank(https://samtale.talkbank.org)进行丹麦对话。13。Slabank(https://slabank.talkbank.org)用于第二语言,14。tbibank(https://tbi.talkbank.org)用于创伤性脑损伤的语言,当前的手册保持了一些早期对儿童语言的重视,尤其是在第一部分,同时将处理的治疗方法扩展到这些方面和格式,并以新代码和几个新部分和几个新部分和几个新的分段。我们将不断地向每个单独的收藏中添加语料库。在2018年,文本数据库的大小为800MB,还有5TB的媒体。TalkBank中的所有数据都可以自由开放下载和分析,但临床语言库中的数据除外,这些数据使用密码向临床研究人员开放。氏族程序和相关的词法标记符都是免费的,并通过github开源。
摘要:人类心脏发育由控制动态和时间基因表达改变的转录因子(TF)网络控制。因此,为了全面地表征这些转录法规,在整个定向的心脏差异中产生了日常转录组素,从三种不同的人类诱导的多能干细胞系中,来自健康的供体(32天)。我们将基于表达的相关评分应用于TF基因的时间顺序表达式,并将它们聚集到12个顺序基因表达波中。然后,我们确定了一个超过23,000个激活和抑制链接的调节网络。在该网络中,我们观察到以前未知的推断转录激活将IRX3和IRX5 TF连接到三个主心脏TFS:GATA4,NKX2-5和TBX5。荧光素酶和共免疫沉淀分析表明,这些五个TF可以(1)激活彼此的表达; (2)物理相互作用作为多蛋白复合物; (3)共同调节SCN5A的表达,编码主要的心脏钠通道。总的来说,这些结果揭示了TF之间的数千种相互作用,从而产生了统治人类心脏发展的多种强大假设。
人脑分为控制和协调独特功能的各种解剖区域。前额叶皮层(PFC)是一个大脑区域,包括一系列神经元和非神经元细胞类型,与皮层区域共享广泛的互连,并且在认知和记忆中起关键作用。通过胚胎发育及时出现不同的细胞类型对于解剖学上完美且功能性的大脑至关重要。无法直接追踪人脑中的细胞命运发展,但是单细胞转录组测序(SCRNA-SEQ)数据集为剖析细胞异质性及其分子调节剂提供了机会。在这里,使用胎儿阶段的人类PFC的SCRNA-SEQ数据,我们在PFC发育过程中阐明了不同的瞬时细胞态及其基因调节电路。我们进一步确定,不同的中间细胞状态由特定基因调节模块组成,该模块使用离散的发育路径到达末端命运所必需的。此外,在使用硅基因敲除和过表达分析中,我们在少突胶质细胞祖细胞的谱系规范过程中验证了至关重要的基因调节成分。我们的研究说明了独特的中间状态和特定的基因相互作用网络,这些网络需要进一步研究其对典型大脑发育的功能贡献,并讨论如何收获这些知识来在挑战神经发育障碍方面进行治疗干预。
注意:可以通过将RNTP浓度提高到4 mm,可以获得更高的RNA产量。MGCL浓度也应提高到20mm(高于16毫米的总RNTP浓度4 mm)。
抽象的花色苷是园艺作物中的重要质量特征。转录因子(TFS)在花青素的生物合成中起关键的调节作用。许多TF在园艺作物中众所周知是花青素生物合成的转录激活剂,而最近已经承认抑制花青素合成的TFS。在这里,我们关注的是最近在园艺作物中对TF的作用和机制负调节花青素生物合成的最新进展。我们讨论了TFS抑制激活复合物的功能,调节阻遏物的TFS和抑制基序,以及转录后调节,翻译后修饰以及TFS的甲基化以及抑制峰基素生物合成的甲基化。这些信息将为这些TF的未来利用提供见解,以提高园艺作物的质量。
注意:通过将 rNTP 浓度分别提高至 4 mM,可以获得更高的 RNA 产量。MgCl 浓度也应提高至 20mM(比总 rNTP 浓度 16 mM 高 4 mM)。
结果:我们发现Holt -Oram综合征患者心房额外的收缩期和心室传导障碍的高发生率。TBX5 G125R/+小鼠在形态上不受影响,并且显示出可变的RR间隔,心房额外的收缩期和对心房颤动的敏感性,让人联想到TBX5-P.G125R患者。心房传导速度不受影响,但与对照组相比,在TBX5 G125R/+小鼠的分离的心肌细胞中,分离的心肌细胞中延长了收缩和舒张性细胞内钙浓度。心房的转录分析揭示了心肌细胞与其他细胞类型的最深刻的转录变化,并在一千个编码和非编码转录本上鉴定出差异表达。表观遗传分析发现了数千个TBX5-P.G125R敏感的,推定的调节元件(包括增强剂),这些元件可在心房心肌细胞中获得可及性。大多数可访问性增加的站点被TBX5占据。对于转录因子的SP(特异性蛋白)和KLF(特异性蛋白)(特异性蛋白)(特异性蛋白)(Krüppel样因子)家族的DNA结合基序的少量位点富含。这些数据表明,TBX5-P.G125R会诱导调节元件活性的变化,改变转录调控以及心肌细胞行为的变化,这可能是由DNA结合和合作特性改变引起的。