摘要 ◥ 目的:在适当的体外和体内模型系统中,已经开发出基于精确机制的基因表达特征 (GES),以识别重要的癌症相关信号传导过程。然而,一些最初开发用于代表特定疾病过程的 GES,主要针对上皮细胞,正在应用于异质性肿瘤样本,其中特征中基因的表达可能不再是上皮特异性的。因此,在不知不觉中,肿瘤基质百分比的微小变化也会直接影响 GES,从而破坏预期的机制信号传导。实验设计:以结直肠癌为例,我们部署了多种正交分析方法,包括激光捕获显微切割、流式细胞术、大量和多区域活检临床样本、单细胞 RNA 测序以及最终的空间转录组学,以全面评估最广泛使用的 GES 的潜力,以
丝状真菌是高产的细胞工厂,其中许多是酶、有机酸和次级代谢物的工业生产者。越来越多的真菌基因组测序揭示了转录沉默的次级代谢物生物合成基因簇 (BGC) 形式的巨大且未开发的生物合成潜力。人们已经采取了各种策略来探索和挖掘这种尚未开发的生物活性分子来源,随着合成生物学的出现,已经为丝状真菌开发了新的应用和工具。在这里,我们总结了旨在表达内源或外源天然产物 BGC 的方法,包括合成转录因子、人工转录单元的组装、基因簇重构、真菌穿梭载体和平台菌株。
AAA-ICDR 正在提供一项强大的新技术,使转录适用于任何规模的案件。我们的转录平台可提供 99% 的单词准确率。它使用强大的 AI 语音识别,并在后台进行人工编辑,提供的结果可与最好的人类速记员相媲美。
摘要乳腺癌是美国和世界范围内最常见的癌症之一,也是女性死亡的主要原因。约 90% 的乳腺癌属于 ER+ 或 HER2+ 亚型,分别由关键乳腺癌基因雌激素受体和 HER2 驱动。尽管抗雌激素 (内分泌) 和抗 HER2 疗法在治疗这些乳腺癌亚型方面取得了进展,但不良副作用、频繁复发和对这些治疗的耐药性仍然是主要的临床挑战。最近的研究发现 ER 共激活因子 MED1 是 ER 功能和抗雌激素治疗耐药性的关键介质。有趣的是,MED1 也与 HER2 共同扩增并由 HER2 信号级联激活,并在 HER2 介导的肿瘤发生和对抗 HER2 治疗的反应中发挥关键作用。因此,MED1 代表了 HER2 和 ER 通路的新串扰点,也是 ER+ 和 HER2+ 乳腺癌治疗的一个非常有希望的新治疗靶点。在这篇综述中,我们将讨论这一关键 ER/HER2 下游效应因子 MED1 在乳腺癌治疗耐药性中的作用的最新进展,以及我们开发的一种基于创新 RNA 纳米技术的方法来靶向 MED1,以便在未来的乳腺癌治疗中克服治疗耐药性。
抗生素耐药性细菌病原体是一个非常具有挑战性的问题。幽门螺杆菌是最广泛,最成功的人类病原体之一,因为它在世界一半的人群中分布,引起慢性和萎缩性胃炎,消化性溃疡,粘膜相关的淋巴样组织 - 淋巴瘤 - 淋巴瘤,甚至是胃腺癌。此外,它表现出对众多抗生素的抗性。幽门螺杆菌关键转录因子之一HP1043在调节必需细胞过程中起着基本作用。与其他细菌转录因子一样,HP1043不显示真核生物同源物。这些特征使HP1043成为发展新型抗菌策略的有前途的候选人。药物重新定位是药物开发中采用的相对较新的策略;测试对新目标的批准药物大大减少了此过程的时间和成本。组合的计算和体外方法进一步减少了要在体内测试的化合物的数量。我们的目标是确定能够防止HP1043结合DNA启动子的一部分。通过评估通过分子对接HP1043二聚体的结合能力在两个构象中,与DNA结合和未结合,从而达到了这一结果。采用包括MMGBSA分子动力学的临时管道,可获得七种药物。通过电泳迁移率转移测定法在体外测试了这些测定,以评估HP1043 - DNA相互作用。在其中,三个有希望的结果显示了HP1043的DNA结合活性的明显降低。总体而言,我们应用了一种计算方法,结合了结果的实验验证,以筛选幽门螺杆菌基本转录因子之一上的大量已知药物。这种方法允许快速减少测试的药物数量,并且药物重新定位方法大大降低了药物设计成本。鉴定的药物不属于同一药物类别,并且通过计算分析构成了不同的腔体,但都显示了DNA上HP1043结合活性的降低。
1 西北农林科技大学植物保护学院,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100 2 西北农林科技大学小麦抗逆改良创新中心,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100 3 西北农林科技大学生命科学学院,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100 4 中国科学院种子设计创新研究院,遗传与发育生物学研究所,植物细胞与染色体工程国家重点实验室,基因组编辑中心,北京 5 中国科学院大学现代农业学院,北京 6 西北农林科技大学旱区作物逆境生物学国家重点实验室,杨凌 712100
摘要 靶向激活内源基因是细胞工程的重要方法。本文,我们报道了核酸酶失活的 dCas9 同时、顺序或作为单个四部分效应物与转录激活因子 (VPR) 和表观遗传效应物 (组蛋白乙酰转移酶 p300 核心的催化结构域) 融合,可以增强靶基因的激活。复合激活因子 VPRP 在不同细胞类型的一组基因中的表现比单个激活因子更有效。我们利用效应物表征了宿主染色质乙酰化和转录组的脱靶效应。我们的工作表明,转录和表观遗传效应物可以一起使用来增强基因激活,并表明需要进一步优化表观遗传效应物以减少脱靶。
自闭症风险基因共表达的转录模式集中于已建立的和新的神经发育特征 Calwing Liao 1,2 , Mariana Moyses-Oliveira 3,4,5 , Celine EF De Esch 3,4,5 , Riya Bhavsar 3,4,5 , Xander Nuttle 3,4,5 , Aiqun Li 6,7,8,9,10 , Alex Yu 6,7,8 , Nicholas D. Burt 3,4,5 , Serkan Erdin 3,4,5 , Jack M. Fu 3,4,5 , Minghui Wang 6,7,8 , Theodore Morley 11 , Lide Han 11 , CommonMind Consortium, Patrick A. Dion 2 , Guy A. Rouleau 1,2 , Bin Zhang 6,7,8 , Kristen J. Brennand 6,7,8,9,10,12,Michael E. Talkowski 3,4,5,Douglas M. Ruderfer 11,13,* 1. 加拿大魁北克省蒙特利尔市麦吉尔大学人类遗传学系。2. 加拿大魁北克省蒙特利尔市麦吉尔大学蒙特利尔神经病学研究所医院。3. 美国马萨诸塞州波士顿市麻省总医院基因组医学中心 02114。4. 美国马萨诸塞州剑桥市麻省理工学院和哈佛大学布罗德研究所医学和群体遗传学项目 02142。5. 美国马萨诸塞州波士顿市麻省总医院和哈佛医学院神经病学系 02114。6. 美国纽约州纽约西奈山伊坎医学院遗传学和基因组科学系 10029。 7. 西奈山转化疾病模型中心,伊坎西奈山医学院,纽约州纽约市 10029,美国。8. 伊坎西奈山医学院,伊坎数据科学与基因组技术研究所,纽约州纽约市 10029,美国。9. 纳什家族神经科学系,伊坎西奈山医学院,纽约州纽约市 10029,美国。10. 弗里德曼脑研究所,伊坎西奈山医学院,纽约州纽约市 10029,美国。 11. 范德堡大学医学中心范德堡遗传研究所医学系遗传医学分部,1211 Medical Center Dr. Nashville, TN 37232 USA 12. 耶鲁大学精神病学系,纽黑文,CT 06511 USA 13. 范德堡大学医学中心生物医学信息学系和精神病学和行为科学系,1211 Medical Center Dr. Nashville, TN 37232 USA *通讯作者:Douglas M. Ruderfer ( douglas@ruderfer@vanderbilt.edu ) 摘要 自闭症谱系障碍 (ASD) 是一种高度遗传的神经发育障碍,其特征是社交互动和沟通障碍。许多基因中蛋白质功能的改变变异已被证明会增加 ASD 风险;然而,了解如此多基因之间的生物学趋同一直很困难。在这里,我们证明人类死后脑样本 (N=993) 的共表达模式与神经元细胞模型中 15 个神经发育基因的 CRISPR 扰动(基因编辑、干扰和激活)的转录结果显着相关。我们发现在 70 个 ASD 风险基因中,存在显着的组织特异性转录趋同,这涉及突触通路。我们进一步表明,收敛程度与测序研究中与 ASD 的关联水平(rho = -0.14,P = 4.75x10 -63)以及尸检 ASD 大脑转录研究中的差异表达(rho = -0.22,P = 3.62x10 -41)显着相关。在去除与 ASD 关联证据最少的基因后,剩余的正收敛基因不耐受突变,编码长度较短,并且富含有提示对 ASD 有贡献的证据的基因。这些结果表明,利用收敛共表达可以识别新的 ASD 风险基因,这些基因更有可能被低估,因此被当前的大规模测序研究遗漏。这项工作最终提供了一种功能代理 CRISPR 扰动的简单方法,展示了已知 ASD 风险基因之间显着的上下文特异性转录收敛,并提出了几个新的 ASD 风险基因候选物。简介自闭症谱系障碍 (ASD) 是一种高度遗传的神经精神疾病,人口患病率约为 1% 1 。测序研究表明,与对照组相比,病例组中罕见的有害变异过多,导致数十种基因导致 ASD 风险 2–5 。这些发现突触功能、染色质和转录调控等 ASD 生物学途径 2,3 是与自闭症有关的。转录组学研究提供了特发性 ASD 患者死后大脑中突触基因下调以及免疫基因上调的证据 6,7 。最近,PsychENCODE 联盟在一组更大的死后人类大脑样本中证实了这些结果染色质和转录调控 2,3。转录组学研究提供了特发性自闭症患者死后大脑中突触基因下调以及免疫基因上调的证据 6,7。最近,PsychENCODE 联盟在一组更大的死后人类大脑中证实了这些结果染色质和转录调控 2,3。转录组学研究提供了特发性自闭症患者死后大脑中突触基因下调以及免疫基因上调的证据 6,7。最近,PsychENCODE 联盟在一组更大的死后人类大脑中证实了这些结果
简单总结:三阴性乳腺癌是一种没有选择性和有效治疗方法的乳腺癌。众所周知,这种癌症富含某些称为转录因子的蛋白质,这些蛋白质对其生长至关重要。然而,由于转录因子在细胞内难以接近,且分子结构复杂,用普通疗法很难抑制它们。在这项研究中,我们确定了对三阴性乳腺癌生长最重要的转录因子,这些转录因子可以预测更糟糕的临床结果。此外,我们描述了用于抑制它们的不同策略。成功抑制这些转录因子可以降低三阴性乳腺癌的死亡率和康复率。
• 在聊天框中仅输入一般问题。为了保护您的隐私,请不要包含个人身份信息。• 如果您有关于您财产的具体问题,请将问题和地址通过电子邮件发送至 STLFUSRAP@usace.army.mil • 如果您还没有在聊天框中输入您的姓名,请不要忘记输入,这样我们就可以统计参加人数。如果您希望添加到 FUSRAP 电子邮件列表中,请包含您的电子邮件地址。FUSRAP 公共事务专家 ANDREA WALES:(46:13)是的,我想提醒大家,我们正在监控聊天,这是与会者和主持人之间的私人聊天。那就是我,FUSRAP 公共事务专家 Andrea Wales。为了保护您的隐私,请不要包含任何个人身份信息,例如地址。如果您对您的财产有具体问题,请将问题和地址通过电子邮件发送至 STLFUSRAP@usace.army.mil,我们将在最后提供联系我们消息/幻灯片。如果您还没有这样做,请不要忘记在聊天框中输入您的姓名,以便我们统计参加人数。如果您想添加到 FUSRAP 电子邮件列表中,请包含您的电子邮件地址。我想让大家知道,我们有几位与会者参加这次会议,包括第 72 区的密苏里州众议员 Doug Clemens 以及参议员 Roy Blunt 办公室的 Jennifer Hoskins。我很高兴每个人都在这里,包括立法者。我有一些问题。更新(未录制):FUSRAP 团队无法捕获整个私人聊天。如果您希望添加到 FUSRAP 电子邮件列表中,请通过电子邮件向 STLFUSRAP@usace.army.mil 提交您的请求。ANDREA WALES:(47:49)第一个问题是,谁必须遵守安全措施?安全措施如何执行?PHIL MOSER。FUSRAP 项目经理:很好的问题,Andrea,再次重申,我们希望确保如果您有问题,可以在聊天中提出,以便我们可以及时解决这些问题。至于谁必须遵守这些安全措施,我们有具体的规则,我们在现场遵守我们的规定,我们的陆军规定,我们希望确保采取所有安全措施,因此从事这项工作的承包商必须遵守,任何外出并实际进行任何类型检查的美国陆军工程兵团人员