©版权CSM Technologies,级别6,E/56,Infocity,Chandrasekharpur,Bhubaneswar,Odisha -751024
HS2 Ltd已由运输部建立,专门为在一个多世纪以北的伦敦以北建造的第一条新的城市间铁路提供,同时确保为纳税人物有所值。HS2 LTD致力于提供此类运输基础设施的规定,但我们的合同被归类为该法案下的公用事业合同,因为它们将全部或主要用于新的高速网络的提供或运营。
次,允许皮肤病理学家专注于复杂的病例,以解决服务不足地区不断增长的需求。尽管取得了这些进步,但由于不足以多样化的培训数据集,监管障碍以及有关数据培训和模型解释性的道德问题,挑战仍然是算法偏见的形式。解决这些挑战需要开发全面的,可解释的AI系统,并建立透明框架以进行临床整合。AI和ML在皮肤病理学中的变革潜力很明显,这些技术可以通过提供精确的诊断诊断,个性化的护理和提高效率来重新定义该领域,最终将皮肤病理学转化为基于证据的新时代,以证据为基于循证的患者,以患者为中心的药物。
Genpact 供应链业务战略副总裁 Flavio Aliberti 讨论了快速变化和劳动力外部化等趋势如何重塑供应链并强调数字协作的必要性。查看更多
机器学习(ML)在公司融资和咨询服务中的应用已彻底改变了传统方法论,尤其是在风险管理领域。本评论论文探讨了ML技术如何增强风险评估,预测性建模和决策过程,从而提高了精度,可扩展性和效率。通过利用ML算法,组织可以在数据中发现隐藏的模式,从而积极地识别和缓解潜在风险。此外,实时分析和高级计算方法的集成使公司能够动态响应对不断发展的财务环境。本文评估了当前趋势,挑战和未来的方向,强调了数据质量,道德考虑因素和整合策略在确保成功实施方面的关键作用。它突出了ML在重新定义风险管理范式和推进公司财务格局中的变革潜力,从而有助于更具弹性和适应性的金融系统。
背景:用于临床试验的知情同意书(ICF)变得越来越复杂,由于合法的术语和冗长的内容而引起的参与者的理解和参与通常会阻碍参与者。大型语言模型(LLMS)的最新进展为简化ICF创建过程的机会,同时改善可读性,可理解性和可行性。目标:本研究旨在评估Mistral 8x22b LLM在生成具有提高可读性,可理解性和可行性的ICF时的性能。具体来说,我们评估了模型在生成可读,可理解和可行的ICF时的有效性,同时保持准确性和完整性。方法:我们使用Mistral 8x22b模型从IMass Chan医学院的机构审查委员会中处理了4项临床试验方案,以生成ICF的关键信息部分。由8位评估者组成的一个多学科团队,包括临床研究人员和健康信息家,评估了针对人类生成的对应物的生成的ICF,以完成完整性,准确性,可读性,可理解性和可行性。关键信息指标的可读性,可理解性和可行性,其中包括18个二进制项目,用于评估这些方面,得分较高,表明信息的可访问性,可理解性和可行性更高。统计分析,包括Wilcoxon等级总和测试和类内相关系数计算,用于比较输出。与人类生成的版本相比,LLM生成的内容在可操作性上取得了完美的分数(100%vs 0%; P <.001)。结果:LLM生成的ICF表现出与关键部分之间人类生成版本相当的性能,准确性和完整性没有显着差异(p> .10)。LLM在可读性(可读性,可理解性和可行得分76.39%vs 66.67%vs 66.67%; FLESCH-KINCAID等级的7.95 vs 8.38)和可理解性(90.63%vs 67.19%; P = .02)中的超过了人类生成的ICF(可读性,可理解性和可行性; 7.95 vs 8.38)。 评估者一致性的类内相关系数为0.83(95%CI 0.64-1.03),表明整个评估的可靠性良好。 结论:Mistral 8x22b LLM在不牺牲准确性或完整性的情况下增强了ICF的可读性,可理解性和可行性方面表现出了有希望的能力。 llms为ICF生成提供了可扩展的,有效的解决方案,潜在地增强了参与者的理解和临床试验中的同意。超过了人类生成的ICF(可读性,可理解性和可行性; 7.95 vs 8.38)。评估者一致性的类内相关系数为0.83(95%CI 0.64-1.03),表明整个评估的可靠性良好。结论:Mistral 8x22b LLM在不牺牲准确性或完整性的情况下增强了ICF的可读性,可理解性和可行性方面表现出了有希望的能力。llms为ICF生成提供了可扩展的,有效的解决方案,潜在地增强了参与者的理解和临床试验中的同意。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。2766-2781,文章ID:IJCET_16_01_195在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue = 1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_1_195©iaeme Publication
大数据和预测分析的抽象演变启动了现代供应链管理的范式转变。传统的供应链设计和需求预测方法依赖于历史,通常在以快速市场波动,不断发展的消费者行为和全球复杂性为特征的环境中不再需要静态数据。预测分析(由大型和多样化的数据集)的能力 - 供应链利益相关者有效预测需求变化,优化资源分配并减轻风险。本审查论文对大数据驱动的预测分析如何改变供应链设计和需求预测进行了深入的研究。我们讨论了大数据的基本概念,探索尖端分析方法,分析对战略和运营决策的影响,并确定挑战和前景。通过巩固关键的技术见解和最佳实践,本文旨在为供应链专业人士,数据科学家和研究人员提供综合资源,以探索如何利用数据驱动的决策来创建弹性,敏捷和透明的供应链。关键字:数据科学,大数据,供应链,数据驱动的决策在当今快速发展的市场,较旧的计划和预测方法中,根本无法跟上突然的市场波动,不断变化的消费者口味以及全球的不确定性。多亏了大数据和预测分析,我们现在可以筛选大型的,多样化的数据源,以发现需求趋势,微调资源分配并减少风险在成为昂贵的问题之前。当代供应连锁店承受着巨大,敏捷和可持续性的巨大压力,同时又提供了较高的客户服务水平。传统的供应链设计和管理方法通常使用小型或静态数据集依赖确定性或随机模型,从而使它们容易受到突然的市场转变和无法预料的破坏。随着高级信息技术的出现,企业现在可以访问大量不同的数据(例如,交易数据,传感器数据,社交媒体趋势,天气报告,经济指标等)。大数据的扩散引起了人们对预测分析的重大兴趣,即各种统计,机器学习(ML)的伞术和数据挖掘技术,这些技术将原始数据转化为可行的见解[1]。预测分析对战略供应链决策有重大影响,例如设施的位置,容量扩展和供应商的选择以及运营领域,例如需求预测,库存管理和物流优化。通过启用实时或接近实时数据驱动
随着人们对气候变化的担忧日益增加,以及最近发生的重大地缘政治危机,循环经济模式受到了前所未有的关注。汽车行业目前正在经历电动化转型,以实现更加环保和社会的可持续性;但仅有汽车电气化是不够的,整个制造过程和报废汽车的处理都需要脱碳。此外,循环经济模式提供了一个操作框架来处理各种问题,包括原材料危机、材料浪费、报废汽车处理、电池再利用和回收以及污染。本文旨在(1)分析汽车行业紧急采用循环经济模式的必要性,(2)为汽车行业提出一个循环经济框架,(3)观察汽车行业和密切相关的制造业中现有或正在开发的循环经济实践,(4)研究形成有利于循环经济转型的生态系统的关键驱动因素。我们的观察表明,所有主要的原始设备制造商都在越来越多地采用循环经济实践,其中一些已经拥有专门的战略和业务部门。在许多情况下,OEM 与供应商、新技术初创公司和当地政府部门合作,扩大项目规模并构建闭环整体解决方案。我们的研究证实,循环经济模式将成为新常态,并从根本上改变汽车行业。