图2 Marmo-Ad联盟的概述。Marmo-AD将利用AD数据宇宙为基因工程的新风险变体提供信息,以介绍摩尔莫斯群岛的基因工程以及临床数据的对准(遗传学,多态,成像,生物标志物,行为措施,认知评估,认知评估)和Model-AD的小鼠模型数据。项目由技术核心执行的实验支持。动物模型将在GEC,床上生成并保持在VCMC中,并在MDCC中进行表征。BDIC将合并来自AD知识门户的数据,优先考虑模型生成的变体,并支持计算和生物统计分析。最后,管理员核心将确保将数据产生,协议,组织和模型提供给研究社区。AD,阿尔茨海默氏病;管理员,行政; BDIC,生物信息学和数据集成核心; GEC,基因工程核心; Marmo-Ad,摩尔莫斯人作为AD的研究模型; MDCC,多模式疾病表征核心; VCMC,兽医和殖民地管理核心; AMP-AD,为阿尔茨海默氏病提供了药物合作伙伴关系计划;阿德尼(Adni),阿尔茨海默氏病神经影像倡议; ADSP,阿尔茨海默氏病测序项目;治疗,靶向促成阿尔茨海默氏病的疗法发展; AD模型,模型生物体开发,以评估晚期阿尔茨海默氏病; ai4ad;阿尔茨海默氏病的人工智能; IGAP:阿尔茨海默氏症项目的国际基因组学,ROS/地图:宗教秩序研究/记忆与老化项目; ADGC:阿尔茨海默氏病遗传学伴侣。AD,阿尔茨海默氏病;管理员,行政; BDIC,生物信息学和数据集成核心; GEC,基因工程核心; Marmo-Ad,摩尔莫斯人作为AD的研究模型; MDCC,多模式疾病表征核心; VCMC,兽医和殖民地管理核心; AMP-AD,为阿尔茨海默氏病提供了药物合作伙伴关系计划;阿德尼(Adni),阿尔茨海默氏病神经影像倡议; ADSP,阿尔茨海默氏病测序项目;治疗,靶向促成阿尔茨海默氏病的疗法发展; AD模型,模型生物体开发,以评估晚期阿尔茨海默氏病; ai4ad;阿尔茨海默氏病的人工智能; IGAP:阿尔茨海默氏症项目的国际基因组学,ROS/地图:宗教秩序研究/记忆与老化项目; ADGC:阿尔茨海默氏病遗传学伴侣。
1 Van Campen and Al。,2020,2021,2023; 2ajčević和al。 SciRep。202313(1):5808。 3 Shan and Al,2020。 医学冥想,18(1),335; 4脊和Al。,2020年。 神经病学的前线,11(828)。 5 Haffke and Al。,J Transl Med。 2022; 20(1):138; 6免费和Al。 J Transl Med; 2020,19:18(1)7 Joseph and Al。,胸部。 2021:160(2):642-651; 8 Turner and Al。,Metab内分泌,2023; S1043-2760(23)0055-3.S1 Van Campen and Al。,2020,2021,2023; 2ajčević和al。SciRep。202313(1):5808。 3 Shan and Al,2020。 医学冥想,18(1),335; 4脊和Al。,2020年。 神经病学的前线,11(828)。 5 Haffke and Al。,J Transl Med。 2022; 20(1):138; 6免费和Al。 J Transl Med; 2020,19:18(1)7 Joseph and Al。,胸部。 2021:160(2):642-651; 8 Turner and Al。,Metab内分泌,2023; S1043-2760(23)0055-3.SSciRep。202313(1):5808。 3 Shan and Al,2020。医学冥想,18(1),335; 4脊和Al。,2020年。神经病学的前线,11(828)。5 Haffke and Al。,J Transl Med。 2022; 20(1):138; 6免费和Al。 J Transl Med; 2020,19:18(1)7 Joseph and Al。,胸部。 2021:160(2):642-651; 8 Turner and Al。,Metab内分泌,2023; S1043-2760(23)0055-3.S5 Haffke and Al。,J Transl Med。2022; 20(1):138; 6免费和Al。J Transl Med; 2020,19:18(1)7 Joseph and Al。,胸部。2021:160(2):642-651; 8 Turner and Al。,Metab内分泌,2023; S1043-2760(23)0055-3.S
CFB,充满因子B; CFD,充满因子D; iv,静脉注射; Mac,完全攻击; MASP-3,与丝氨酸相关的丝氨酸相关丝氨酸-3; PNH,夜间阵发性的夜间阵发; RBC,红细胞; SC,皮下。1。notaro r和al。n Engel J Med2022; 387:160–6。2。am和al。Rev Immunol2023; 313:262–78。3。röthA和al。Hemasphere 2023; 7(S3):S14。安排PE和AL。Hemasphere 2023; 7(S3):S15。帮助他和Al。Hemasphere 2023; 7(S3):P7 6。 Belcher JD和Al。 Transl res。 2022; 249:1-12。Hemasphere 2023; 7(S3):P76。Belcher JD和Al。 Transl res。 2022; 249:1-12。Belcher JD和Al。Transl res。2022; 249:1-12。
1。超人类主义:社会和哲学运动。(2023)。访问:2023年10月12日:https://www.britannica.com/topic/transhumanism#ref1308463。2。Crowson MG,Lin V,Chen JM,Chan TC:机器学习和人工耳蜗 - 机遇和挑战的结构化审查。耳醇神经醇。 2020,41:e36-45。 10.1097/Mao.00000000002440 3。 Waltzman SB,Kelsall DC:使用人工智能编程人工耳蜗。 耳醇神经醇。 2020,41:452-7。 10.1097/mao.0000000000002566 4。 Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。 耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2020,41:e36-45。10.1097/Mao.00000000002440 3。Waltzman SB,Kelsall DC:使用人工智能编程人工耳蜗。耳醇神经醇。 2020,41:452-7。 10.1097/mao.0000000000002566 4。 Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。 耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2020,41:452-7。10.1097/mao.0000000000002566 4。Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2023,44:209-15。10.1097/Mao.0000000000003810 5。张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109张X,Ma Z,Zheng H等。:脑部计算机界面和人工智能的组合:应用和挑战。Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109Ann Transl Med。2020,8:712。10.21037/atm.2019.11.109
Spaczynska, M.、Rocha, S. F. 和 Oliver, E. (2020)。肺动脉高压药理学:当前和新兴疗法概述。ACS Pharmacol Transl Sci,3 (4),598‐612。doi:10.1021/acsptsci.0c00048
执行功能在实现血糖控制方面的重要性”。糖尿病护理,2019年,第42卷(2),第225-231页。4。Davies M,“胰岛素治疗糖尿病中血糖控制的现实:定义临床挑战”。Int J Obes,2004年,第28卷(S2),pp S14 – S22。5。“发现的故事 - 用于管理1型糖尿病的人造胰腺:制作中50年的尖端技术 - Niddk”。国家糖尿病与消化和肾脏疾病研究所,2017年1月。6。Boughton CK,Hovorka R,“人工胰腺系统的进步”。 SCI Transl Med,2019年,第11卷(484),文章EAAW4949。 7。 Schmelzeisen-Redeker G等人,“ CGM传感器的时间延迟:相关性,原因和对策”。 J糖尿病Sci Technol,2015年,第9(5)卷,第1006–1015页。 8。 Kovatchev BP等人,“评估不使用连续葡萄糖监测的传感器精度”。 糖尿病技术,2015年,第17(3)卷,第177-186页。 9。 Bailey TS,Alva S,“连续葡萄糖监测(CGM)和集成CGM的景观:准确性注意事项”。Boughton CK,Hovorka R,“人工胰腺系统的进步”。SCI Transl Med,2019年,第11卷(484),文章EAAW4949。7。Schmelzeisen-Redeker G等人,“ CGM传感器的时间延迟:相关性,原因和对策”。J糖尿病Sci Technol,2015年,第9(5)卷,第1006–1015页。8。Kovatchev BP等人,“评估不使用连续葡萄糖监测的传感器精度”。糖尿病技术,2015年,第17(3)卷,第177-186页。9。Bailey TS,Alva S,“连续葡萄糖监测(CGM)和集成CGM的景观:准确性注意事项”。
关键文章(最多5):1。Tolosa E,Garrido A,Scholz SW,Poewe W.帕金森氏病诊断的挑战。柳叶刀神经。2021年5月; 20(5):385-397。 doi:10.1016/s1474-4422(21)00030-2。2。Tolosa E,Vila M,Klein C,Rascol O. LRRK2在帕金森氏病:临床试验的挑战。nat Rev Neurol。2020年2月; 16(2):97-107。 doi:10.1038/s41582-019-0301-2。EPUB 2020 JAN 24.PMID:31980808 3。San Luciano M,Tanner CM,Meng C,Marras C,Goldman SM,Lang AE,Tolosa E,SchüleB,SchüleB,Langston JW,Brice A,Corvol JC,Goldwurm S,Klein C,Brockman C,Brockman C,Brockman S,Berg D,Berg D,Brockmann K,Brockmann K,Brockmann K,Ferreira JJ,Ferreira JJ,sue azir Meseg heseg hes thazir M,thazir M,thazir M,thazir Mellick,thazir mellick g g。 EK,Bressman S,Saunders-Pullman R;迈克尔J.Fox Foundation LRRK2队列联盟。非甾体类抗炎用途和LRRK2帕金森氏病渗透率。MOV DISORD。 2020年10月; 35(10):1755-1764。 doi:10.1002/mds.28189。 EPUB 2020 JUL 14。 4。 Garrido A,Fairfoul G,Tolosa E,Marti MJ,Ezquerra M,Green Aje。 大脑和脑脊液α-突触核蛋白实时Quaking诱导的转化率鉴定了LRRK2-PD中的Lewy体病理学。 MOV DISORD。 2023年2月; 38(2):333-338。 doi:10.1002/mds.29284。 EPUB 2022 DEC 5.PMID:36471633 5。 Garrido A,Fairfoul G,Tolosa ES,MartíMJ,Green A;巴塞罗那LRRK2研究小组。 α-核蛋白RT-在LRRK2连接帕金森氏病的脑脊液中。 Ann Clin Transl Neurol。 2019年5月9日; 6(6):1024-1032。 doi:10.1002/acn3.772。 Ecollection 2019 Jun。MOV DISORD。2020年10月; 35(10):1755-1764。 doi:10.1002/mds.28189。EPUB 2020 JUL 14。4。Garrido A,Fairfoul G,Tolosa E,Marti MJ,Ezquerra M,Green Aje。大脑和脑脊液α-突触核蛋白实时Quaking诱导的转化率鉴定了LRRK2-PD中的Lewy体病理学。MOV DISORD。 2023年2月; 38(2):333-338。 doi:10.1002/mds.29284。 EPUB 2022 DEC 5.PMID:36471633 5。 Garrido A,Fairfoul G,Tolosa ES,MartíMJ,Green A;巴塞罗那LRRK2研究小组。 α-核蛋白RT-在LRRK2连接帕金森氏病的脑脊液中。 Ann Clin Transl Neurol。 2019年5月9日; 6(6):1024-1032。 doi:10.1002/acn3.772。 Ecollection 2019 Jun。MOV DISORD。2023年2月; 38(2):333-338。 doi:10.1002/mds.29284。EPUB 2022 DEC 5.PMID:36471633 5。Garrido A,Fairfoul G,Tolosa ES,MartíMJ,Green A;巴塞罗那LRRK2研究小组。α-核蛋白RT-在LRRK2连接帕金森氏病的脑脊液中。Ann Clin Transl Neurol。 2019年5月9日; 6(6):1024-1032。 doi:10.1002/acn3.772。 Ecollection 2019 Jun。Ann Clin Transl Neurol。2019年5月9日; 6(6):1024-1032。 doi:10.1002/acn3.772。Ecollection 2019 Jun。
1。D. Jennings等。,LRRK2抑制剂DNL201的安全性,耐受性和药效学:从临床前研究到帕金森的临床试验SCI Transal Med,Press(2022)。2。C. Paisan-Ruiz等。 ,含有引起Park8连接帕金森氏病的突变的基因克隆。 Neuron 44,595-600(2004)。 3。 A. Zimprich等。 ,LRRK2中的突变引起带有多形病理学的常染色体式帕金森氏症。 Neuron 44,601-607(2004)。 4。 E. Greggio等。 ,突变lrrk2/dardarin的毒性作用需要激酶活性。 疾病神经生物学23,329-341(2006)。 5。 W. W. Smith等。 ,突变lrk2的激酶活性介导神经元毒性。 自然神经科学9,1231-1233(2006)。 6。 C. Blauwendraat,M。A. Nalls,A。 B. Singleton,帕金森氏病的遗传结构。 柳叶刀。 神经病学19,170-178(2020)。 7。 M. A. S. Baptista等。 ,LRRK2抑制剂可诱导非人类灵长类动物肺的可逆变化,而无需可测量的肺部缺陷。 SCI Transl Med 12,(2020)。 8。 C. Blauwendraat等。 ,帕金森病LRRK2中功能变异的丧失频率。 JAMA Neurol 75,1416-1422(2018)。 9。 E. Jabbari等。 ,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。 柳叶刀。 10。C. Paisan-Ruiz等。,含有引起Park8连接帕金森氏病的突变的基因克隆。Neuron 44,595-600(2004)。3。A. Zimprich等。 ,LRRK2中的突变引起带有多形病理学的常染色体式帕金森氏症。 Neuron 44,601-607(2004)。 4。 E. Greggio等。 ,突变lrrk2/dardarin的毒性作用需要激酶活性。 疾病神经生物学23,329-341(2006)。 5。 W. W. Smith等。 ,突变lrk2的激酶活性介导神经元毒性。 自然神经科学9,1231-1233(2006)。 6。 C. Blauwendraat,M。A. Nalls,A。 B. Singleton,帕金森氏病的遗传结构。 柳叶刀。 神经病学19,170-178(2020)。 7。 M. A. S. Baptista等。 ,LRRK2抑制剂可诱导非人类灵长类动物肺的可逆变化,而无需可测量的肺部缺陷。 SCI Transl Med 12,(2020)。 8。 C. Blauwendraat等。 ,帕金森病LRRK2中功能变异的丧失频率。 JAMA Neurol 75,1416-1422(2018)。 9。 E. Jabbari等。 ,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。 柳叶刀。 10。A. Zimprich等。,LRRK2中的突变引起带有多形病理学的常染色体式帕金森氏症。Neuron 44,601-607(2004)。4。E. Greggio等。 ,突变lrrk2/dardarin的毒性作用需要激酶活性。 疾病神经生物学23,329-341(2006)。 5。 W. W. Smith等。 ,突变lrk2的激酶活性介导神经元毒性。 自然神经科学9,1231-1233(2006)。 6。 C. Blauwendraat,M。A. Nalls,A。 B. Singleton,帕金森氏病的遗传结构。 柳叶刀。 神经病学19,170-178(2020)。 7。 M. A. S. Baptista等。 ,LRRK2抑制剂可诱导非人类灵长类动物肺的可逆变化,而无需可测量的肺部缺陷。 SCI Transl Med 12,(2020)。 8。 C. Blauwendraat等。 ,帕金森病LRRK2中功能变异的丧失频率。 JAMA Neurol 75,1416-1422(2018)。 9。 E. Jabbari等。 ,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。 柳叶刀。 10。E. Greggio等。,突变lrrk2/dardarin的毒性作用需要激酶活性。疾病神经生物学23,329-341(2006)。 5。 W. W. Smith等。 ,突变lrk2的激酶活性介导神经元毒性。 自然神经科学9,1231-1233(2006)。 6。 C. Blauwendraat,M。A. Nalls,A。 B. Singleton,帕金森氏病的遗传结构。 柳叶刀。 神经病学19,170-178(2020)。 7。 M. A. S. Baptista等。 ,LRRK2抑制剂可诱导非人类灵长类动物肺的可逆变化,而无需可测量的肺部缺陷。 SCI Transl Med 12,(2020)。 8。 C. Blauwendraat等。 ,帕金森病LRRK2中功能变异的丧失频率。 JAMA Neurol 75,1416-1422(2018)。 9。 E. Jabbari等。 ,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。 柳叶刀。 10。疾病神经生物学23,329-341(2006)。5。W. W. Smith等。,突变lrk2的激酶活性介导神经元毒性。自然神经科学9,1231-1233(2006)。6。C. Blauwendraat,M。A. Nalls,A。B. Singleton,帕金森氏病的遗传结构。柳叶刀。神经病学19,170-178(2020)。7。M. A. S. Baptista等。 ,LRRK2抑制剂可诱导非人类灵长类动物肺的可逆变化,而无需可测量的肺部缺陷。 SCI Transl Med 12,(2020)。 8。 C. Blauwendraat等。 ,帕金森病LRRK2中功能变异的丧失频率。 JAMA Neurol 75,1416-1422(2018)。 9。 E. Jabbari等。 ,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。 柳叶刀。 10。M. A. S. Baptista等。,LRRK2抑制剂可诱导非人类灵长类动物肺的可逆变化,而无需可测量的肺部缺陷。SCI Transl Med 12,(2020)。8。C. Blauwendraat等。,帕金森病LRRK2中功能变异的丧失频率。JAMA Neurol 75,1416-1422(2018)。9。E. Jabbari等。 ,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。 柳叶刀。 10。E. Jabbari等。,渐进性上核瘫痪中生存的遗传决定因素:全基因组关联研究。柳叶刀。10。神经病学20,107-116(2021)。E. Tolosa,M。Vila,C。Klein,O。Rascol,LRRK2在帕金森氏病:临床试验的挑战。 自然评论。 神经病学16,97-107(2020)。E. Tolosa,M。Vila,C。Klein,O。Rascol,LRRK2在帕金森氏病:临床试验的挑战。自然评论。神经病学16,97-107(2020)。
图像改编自Verkleij CPM等。Curr Opin Oncol。2020; 32:664-71和Bruins WSC等。前疫苗。2020; 11:1155。4月,诱发扩散的配体; Baff,B细胞激活因子; BCMA,B细胞成熟抗原; CD,分化簇; FCRH5,FC受体样5; GPRC5D,G蛋白耦合受体家族C第5组成员D; IG,免疫球蛋白; MM,多发性骨髓瘤; NF-κB,核因子BS; PC,浆细胞; SLAMF7,信号淋巴细胞活化分子家族成员7; TNF,肿瘤坏死因子。1。Rodríguez-Lobato LG等。前Oncol。2020; 10:1243。2。Pillarisetti K等。血液副词。2020; 4:4538–49。3。Yu B等。 J hematol oncol。 2020; 13:125。 4。 Verkleij CPM等。 血液副词。 2020; 5; 2196-215。 5。 Smith El等。 SCI Transl Med。 2019; 11:EAAU7746。 6。 li J等。 癌细胞。 2017; 31; 383-95。 7。 Bruins WSC等。 前疫苗。 2020; 11:1155。 8。 兰斯曼G等。 血液癌discov。 2021; 2:423-33。Yu B等。J hematol oncol。2020; 13:125。4。Verkleij CPM等。血液副词。2020; 5; 2196-215。5。Smith El等。SCI Transl Med。2019; 11:EAAU7746。 6。 li J等。 癌细胞。 2017; 31; 383-95。 7。 Bruins WSC等。 前疫苗。 2020; 11:1155。 8。 兰斯曼G等。 血液癌discov。 2021; 2:423-33。2019; 11:EAAU7746。6。li J等。癌细胞。2017; 31; 383-95。7。Bruins WSC等。前疫苗。2020; 11:1155。8。兰斯曼G等。血液癌discov。2021; 2:423-33。
7 Ahn S 等人。 J Pathol Transl Med. 2020;54(1):34-44。 8 Sajjadi E 等人。抗癌药物。 2022;5(4):882-888。 9 Manohar P 等人。癌症生物医学。 2022 年 2 月 15 日; 19(2):202–212。 10 Cortes J 等人。柳叶刀。 2011;377:914-923。 11 袁鹏等.欧洲癌症杂志。 2019;112:57-65。 12 耶路撒冷 G 等人。 JAMA Oncol. 2018;4(10):1367–1374。 13 Modi S 等人。 N Engl J Med. 2022;387:9-20。 14 Eiger D 等人。癌症。 2021 年 3 月; 13(5): 1015。