诸如可以保留雨水然后过滤以进行回收或排放到地面的绿色屋顶以及可以应用于窗户以减少过热的薄膜等解决方案旨在应对气候变化的后果,例如洪水和过热。例子包括 Microshade 的遮阳技术,这是一种微结构薄膜,可适应阳光,在夏季提供高达 100% 的光束遮蔽,在冬季提供 35% 的太阳能透射率,以及 Filia,一种遮光帘,将太阳能薄膜集成到现有或新的遮光帘和门上,将它们转变为太阳能电池板。
石英调谐叉最近被用作可调激光二极管光谱的红外光电探测器,因为它们的响应率很高和快速响应时间。至于用于光电检测的所有灵敏元素,主要缺点是它们吸收光谱的有限带宽。对于石英晶体而言,高于5 µm的波长的高吸收性可确保在中红外范围内出色的性能,由于其透明度从0.2 µm到5 µm,因此在可见/近红外范围内无法轻易扩展。在这项工作中,我们报告了激光表面功能化过程的开发,以增强在1-5 µM光谱范围内称为黑色石英的石英晶体的光吸收。黑色石英由超快速激光处理对石英晶体的表面修饰组成,以在顶部创建类似陨石坑的局部矩阵样模式。表面修饰降低了1-5 µm中石英的透射率范围从> 95%降低至<10%,而高于5 µm的透射率保持不变。将黑色石英过程应用于两个石英 - 调谐叉上,该石英叉安装在可调激光二极管光谱传感器中,用于检测两个水蒸气吸收特征,一个在近红外,另一个在中红外。在检测两个吸收特征时估计了可比的响应性,证实了在近红外范围内操作的扩展。这项工作代表了在整个红外光谱范围内具有高响应性的基于石英的光电探测器实现的重要而有希望的步骤。
报告介绍了一项研究,其中使用预定的制造方法将轻木、白蜡木和桦木制成透明木材。透明木材有许多可能的应用,包括节能建筑、包装、太阳能电池和电子设备。这项研究的目的是比较获得的透明样品的形态和光学特性,并将这些结果与它们的微观结构联系起来。这样做是为了确定哪种木材最适合预定的制造方法。所选的制造方法包括三个步骤:脱木素、溶剂交换和聚合物渗透。该工艺的第一步,即脱木素,目的是去除木质素,木质素是木材中赋予木材颜色的成分。这是通过在酸性环境中用醋酸盐缓冲液和亚氯酸钠进行化学处理,同时诱导加热来实现的,木材样品由此变白。然后将样品放入真空干燥器中,脱木素化学品首先与乙醇交换,然后与丙酮交换。乙醇可防止纤维收缩,丙酮可去除木材结构中的最后化学残留物。在最后一步聚合物渗透之前,甲基丙烯酸甲酯单体聚合成低聚物。然后在真空条件下将它们渗透到木材样品中,在那里它们聚合成聚甲基丙烯酸甲酯 (PMMA)。PMMA 具有与木材相似的折射率,这减少了光散射并增加了样品的透明度。然后将木材样品包装在两块玻璃板之间,用铝箔包裹,并在烤箱中加热以完成聚合。此后,获得透明的木材片。对木材样品的光学特性和形态进行了表征。为了确定光学特性,测量了透射率和雾度。透射率表示有多少光可以穿过样品,而雾度表示与透射率相关的光散射量。这些参数是根据 ASTM D1003“透明塑料雾度和透光率的标准方法”测量的。使用扫描电子显微镜 (SEM) 表征样品的形态,并获取高分辨率图像。通过这些图像,可以分析木材样品的微观结构,并评估脱木素和聚合物渗透的程度。光学特性测量结果表明,轻木的透光率最高(81-87%),其次是桦木(74-83%),然后是白蜡木(早材 66-78%,晚材 74-83%)。此外,轻木的雾度约为 65-70%,桦木约为 70-75%,白蜡木约为 74-80%。分析 SEM 图像后,得出结论:轻木的脱木素程度最高。这是通过观察纤维之间的细胞壁角来确定的,未经处理的木材中细胞壁角充满了木质素。观察到这些空间在脱木素的轻木中大多是空的,这表明这种木材的脱木素程度最高。由于所有样品中都有气穴,因此三种木材的聚合物渗透程度被认为是相同的。总的来说,这导致轻木是三种木材中最透明的,因此可以认为它最适合这种制造方法。
符合条件的接收者:燃料电池、太阳能、地热、小型风能、储能、沼气、微电网控制器以及热电联产。对于太阳能,包括 (1) 使用太阳能发电、加热或冷却(或提供热水供使用)建筑物或提供太阳能工艺热的设备,以及 (2) 使用太阳能照亮建筑物内部的设备,使用光纤分布式阳光或电致变色玻璃,使用电力改变其透光特性以加热或冷却建筑物。
我的实验论文是关于晶体硅异质结太阳能电池中选择性接触的新材料。我参与了通过透射率和反射率、电导率和活化能测量对薄膜进行材料表征,以及通过 IV 特性和量子效率测量对硅基异质结太阳能电池进行光电表征。我在硅晶片的清洗、洁净室中的湿化学处理和钝化过程中工作,然后沉积不同的薄膜。我证明了使用 NiLiO 作为空穴选择层的 a-SHJ 的可行性。
我的实验论文是关于晶体硅异质结太阳能电池中选择性接触的新材料。我参与了通过透射率和反射率、电导率和活化能测量对薄膜进行材料表征,以及通过 IV 特性和量子效率测量对硅基异质结太阳能电池进行光电表征。我在硅晶片的清洗、洁净室中的湿化学处理和钝化过程中工作,然后沉积不同的薄膜。我证明了使用 NiLiO 作为空穴选择层的 a-SHJ 的可行性。
这项研究探索了铝掺杂对ZnO薄膜光学和电气性能的影响,以及它们的气感应能力,特别是对血清的响应。薄膜,然后在500°C下退火,其掺杂浓度变化(0%,0.5%,1%,1%,1.5%,2%和2.5%)。结果表明,较高的Al掺杂提高了透射率,这可能是由于结晶度增强和爆发蛋白 - 莫斯效应所致,而2.5%的Al掺杂ZnO表现出最高的透射率约为85%。折射率和灭绝系数分析表明,在较高的掺杂水平下,光吸收和散射降低,反映了膜质量的提高。介电常数的实际和虚部也随掺杂而变化,掺杂的ZnO为0.5%,显示了最高的实际部分,表明更好的介电性能。Al掺杂的ZnO膜的光条间隙随着AL浓度的增加而降低,与先前的研究一致,表明电导率的潜在改善。电性能,尤其是I-V特性,表明较高的Al掺杂降低了电导率,这可能是由于电荷载体散射增加所致。气体传感实验表明,2%掺杂的ZnO对血清表现出更高的敏感性,而耐药性随时间和血清体积而变化,突出了ZnO膜及其环境之间的动态相互作用。该研究的发现表明,Al掺杂增强了ZnO薄膜的光学和传感特性,最佳的掺杂浓度约为2%,以最大程度的灵敏度。
Nomenclature AR5 – The 5th Assessment Report of IPCC CCRR – Center for Climate and Resilience Research EC – Energy Consumption GBS – Green Building Studio GHG – Greenhouse Gases HDD15°C – heating degree-days with base temperature 15°C IPCC – Intergovernmental Panel on Climate Change MM5 – Mesoscale Meteorological Model Version 5 OGUC – General Ordinance of Urban Planning and Housing of智利RCP住房和城市发展部 - IPCC RF TOT的代表性浓度途径 - OGUC SRES的总辐射强迫RT - 热调节应用手册 - IPCC U-Value排放场景的特别报告 - 热传递 - 热透态 - [W/M 2·K] 1
1.1 Electromagnetic Spectrum and Atmospheric Transmission 2 1.2 Blackbody Radiation 4 1.3 A Day in the Life of a Photon 7 1.4 Refraction and Refractive Index 10 1.4.1 Birefringence 15 1.4.2 Preference for cubic materials 18 1.5 Reflection and Transmission 20 1.5.1 Transmission of an absorbing window 22 1.5.2 Etalon effect 23 1.6 Optical Constants n and k 26 1.7 Behavior of Absorption Coefficient and Refractive Index 28 1.8 Transmission Spectra of Infrared Materials 30 1.9 Measuring the Absorption Coefficient 43 1.9.1 Direct transmittance measurements 43 1.9.2 Laser calorimetry 46 1.9.3 Photothermal common-path interferometry 49 1.10 Emittance 53 1.10.1 Absorption coefficients of sapphire, spinel, and ALON near their 5 m m absorption cutoff 58 1.11 Effect在吸收和发射时的温度58 1.12半导体中的游离载体吸收60 1.13是什么使窗户中部或长波成为什么?67 1.14“两色”材料76 1.15杂质中的红外窗户吸收特征78 1.15.1热榨氟化镁78 1.15.2 OH在多晶氧化物中79 1.15.1 1.15.3标准奖励蒸气剂量固定Zns 80 1.15.4 Co 2 co 2 co 2 ex co 2 ex co prapped ore proper ot ex ex ex <多cer ex ex <多cer <
