现代 CFD 技术为风洞升级提供了新的机会。在这里,我们应用 RANS 模型来计算 ONERA Meudon 中心 S3Ch 跨音速风洞回路的流量。通过在风扇位置实施驱动盘以及在沉降室热交换器位置实施总压力和温度损失来设置流量。该方法针对沉降室和测试段中可用的一组简化实验流量数据进行了验证。将结果与标准设计指南一起考虑,以确定对该回路的修改,以提高流动质量。当风洞在不久的将来移至不同位置时,将实施新回路。另一部分工作致力于计算测试段的自适应顶壁和底壁。作为升级当前工具的尝试,该工具使用测试段内流动的线性化势模型,我们考虑了 RANS 方法并定义了一个新的优化过程,以尽量减少壁对目标流动的影响(与自由飞行条件下的流动相比)。新方法应用于跨音速条件下机翼翼型的特殊情况,仅考虑模拟数据时就显示出接近完美的校正。
由于隐形技术和现代导弹的发展,未来空战的空战战术将发生重大变化。快速目视交战可以通过高攻角和跨音速下的快速瞬时机动来决定,而射击优势则通过快速导弹交换来确定。在更高的跨音速下,必须掌握受控涡流,以便控制所有三个轴的运动。飞机的平面形状、机翼后掠角和前缘类型必须在整个飞行包线内为这些复杂流动提供共同利益,同时还要考虑特征。通常在侧滑条件下会达到受控飞行极限。在这里,不对称涡流不稳定性会导致不稳定的滚动力矩和不利的偏航。为了突破这些极限,必须深入了解涡流分离、它们的相互作用和分解。设计气动特性的探测需要借助现代流动模拟工具,并在适当的物理理解的基础上进行验证。
1.1.1 描述以下标准并说明影响每个标准的因素:a. 马赫数 b.区分亚音速、跨音速和超音速飞行的近似马赫数 c. 临界马赫数 d. 马赫锥 e. 亚音速飞行 f. 超音速飞行 g. 跨音速飞行 h. 超音速气流特性 i.大气特性对声速的影响 j. 气动/动能加热 k. 面积律 l. 压缩性和压缩性冲击 m. 不可压缩性 n. 膨胀波 o.冲击引起的阻力 p. 冲击引起的失速 q.尾流湍流 r. 与边界层相关的气流 s. 压力扰动传播及其对超音速气流的影响 t. 压力扰动的近似速度 u.边界层及其对飞机空气动力学性能的影响 v. 翼型最大弯度点与弦长百分比的关系 w. 超音速气流通过发散管道
航空技术研究所在“空气动力学”、“结构与材料”、“航空发动机”和“飞行技术”四个领域开展研究。“空气动力学”是流体力学的一部分,是航空的基础。航空技术研究所有十多个风洞,这些风洞是用于空气动力学实验的设备。我们最大的卖点是能够进行从低速到跨音速、超音速和高超音速的各种速度的实验。例如,6.5 m×5.5 m的低速风洞的试验段是日本最大的飞机风洞。跨音速风洞可产生约1马赫的风速,由JAXA(也由私营部门和其他外部各方使用)使用,是日本所有风洞中运行率最高的。超音速和高超音速风洞用于飞机,也用于火箭和宇宙领域的其他实验。除了各种各样的风洞之外,近年来我们在计算流体动力学(CFD)方面也处于领先地位,该技术用于使用计算机研究气流。
CSIR-NAL,国家三音速空气动力学设施 (NTAF) 部门,1.2m*1.2m 三音速风洞用于亚音速、跨音速和超音速马赫数测试(0.2-4.0)。柔性喷嘴 (FN) 是三音速风洞的重要组成部分。喷嘴由一对柔性钢板制成,设置为沿流道顶部和底部形成适当的轮廓。它由位于 17 个站点的液压执行器操作和控制。这些钢板上的过应力是由于曲率设置错误(过度弯曲)或液压千斤顶故障(例如执行缸卡住)或曲率传感器问题造成的。曲率传感器组件安装在柔性喷嘴边缘的不同位置,以识别过应力。由于风洞测试持续时间限制(约 30-40 秒)和串联传感器,通过选择开关扫描来识别特定站点的应力发生情况非常具有挑战性。为了解决这个问题,在 1.2 米 Trisonic 风洞中实施了柔性喷嘴的实时健康监测系统。在这里,限位开关输出并联连接到基于 NI 的硬件。如果板上出现应力,它将被记录并显示在实时软件中。关键词:- 柔性喷嘴、马赫数、风洞、Trisonic、亚音速、跨音速、超音速
Wing Ng 是 APPL 的联合主任。他是弗吉尼亚理工大学机械工程系的杰出校友教授和 Chris C. Kraft 教授。他的主要研究兴趣是无人机和无人驾驶飞行器的气动声学、喷气噪声的气动声学、涡轮发动机流量测量和飞行测试的先进诊断技术的开发、跨音速涡轮叶片空气动力学和传热研究、燃气轮机扩散器/收集器性能评估以及燃气轮机部件的气动热粒子研究。
挑战 JWST 是一种脆弱的技术,必须承受作为运载火箭 6 吨有效载荷的运输。卫星及其组件(如 MIRI)必须承受火箭发动机与发射台环境之间约 145 dB 相互作用产生的噪音和随后的振动、颠簸的跨音速爬升阶段、级间分离时的火爆冲击和湍流边界层激发。这些发射力会导致弹性金属结构疲劳,更不用说像 MIRI 这样的仪器的敏感电气和光学元件了。
Wing Ng 是 APPL 的联合主任。他是弗吉尼亚理工大学机械工程系的杰出校友教授和 Chris C. Kraft 教授。他的主要研究兴趣是无人机和无人驾驶飞行器的气动声学、喷气噪声的气动声学、涡轮发动机流量测量和飞行测试的先进诊断技术的开发、跨音速涡轮叶片空气动力学和传热研究、燃气轮机扩散器/收集器性能评估以及燃气轮机部件的气动热粒子研究。
