摘要:农作物的水状态直接受土壤水的供应影响。因此,本研究旨在分析不同土壤水分含量(80、90、100、100、110、110、110、110和120%的现场容量-FC)和受精系统(常规和施肥)的玉米中的水关系(双跨混合AG 1051)。该实验是在2019年8月至2019年10月至10月的巴西雷夫市,在巴西佩尔南布科州雷·佩恩市的农村乡村农村乡村的农业工程系中进行的实验。实验设计是具有5×2阶乘方案的随机块,四个重复和40个实验单元。在土壤湿度水平以下低于田间容量(100%FC)的100%,增加了玉米植物的相对水分含量,叶片,叶水的潜力和渗透调节。与常规施肥相比,施肥会导致较高的蒸腾率和以95%的田间容量(95%FC)灌溉的农作物中的水效率提高。在提交土壤水分水平以下的植物中,受精系统会影响水,渗透和压力潜力,以及渗透调节。
摘要:农作物的水状态直接受土壤水的供应影响。因此,本研究旨在分析不同土壤水分含量(80、90、100、100、110、110、110、110和120%的现场容量-FC)和受精系统(常规和施肥)的玉米中的水关系(双跨混合AG 1051)。该实验是在2019年8月至2019年10月至10月的巴西雷夫市,在巴西佩尔南布科州雷·佩恩市的农村乡村农村乡村的农业工程系中进行的实验。实验设计是具有5×2阶乘方案的随机块,四个重复和40个实验单元。在土壤湿度水平以下低于田间容量(100%FC)的100%,增加了玉米植物的相对水分含量,叶片,叶水的潜力和渗透调节。与常规施肥相比,施肥会导致较高的蒸腾率和以95%的田间容量(95%FC)灌溉的农作物中的水效率提高。在提交土壤水分水平以下的植物中,受精系统会影响水,渗透和压力潜力,以及渗透调节。
摘要:质量注入热防护是一种高效、主动的热防护技术,它通过向流场中注入储存的冷却剂来冷却结构,冷却剂在吸收热量的同时,还对流场结构产生影响,起到隔热作用。质量注入方式可用于高热流密度、长时间飞行的工况,是高超声速飞行器最有潜力的冷却技术之一。蒸发、薄膜冷却和对冲喷射是高超声速飞行器热防护的典型质量注入技术。本文介绍了3种典型的质量注入技术的冷却机理,比较了3种技术的注入方式、流场特点和冷却效率,分析了3种技术在飞行器上应用的不足,并针对每种不足推荐了几种质量注入技术的组合方案。最后,对质量注入技术的进一步发展提出了3点展望。未来应发展大体积注入热防护技术的流体-热-结构耦合方法、注入结构设计与优化以及热防护系统效能评估等。
细胞分裂素 (CK) 是调节植物生长、发育和应激反应的多面激素。细胞分裂素与改善穗结构和谷粒产量有关,但被细胞分裂素氧化酶 (CKX) 灭活。在这项研究中,我们使用 CRISPR/Cas9 基因编辑在籼稻中开发了一种细胞分裂素氧化酶 2 (Osckx2) 缺陷突变体,并评估了其在缺水和盐度条件下的功能。OsCKX2 功能的丧失通过提高穗组织中的细胞分裂素含量增加了谷粒数量、二次穗分枝和总谷粒产量。在干旱条件下,Osckx2 突变体保存了更多的水并表现出更好的节水特性。通过减少蒸腾作用,Osckx2 突变体对未设置的脱水胁迫表现出比野生型更好的存活反应。此外,Osckx2 通过增强的抗氧化保护系统保持叶绿体和膜的完整性,并在干旱条件下表现出显著改善的光合功能。 OsCKX2 功能对穗粒数和耐旱性有负面影响,而对盐度没有明显影响。这一发现表明,有益的 Osckx2 等位基因可用于育种,以开发具有气候适应能力的高产品种,从而保障未来的粮食安全。
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
摘要:影响Holm Oak的根腐是伊比利亚半岛高生态和经济损失的原因,强调了发展疾病控制方法的相关性。这项工作的目的是评估由有益的生物(Trichoderma Complex,T-Complex)组成的生物处理的作用,对在两个对比的Holm Oak Ecotyp中感染的Holm Oak幼苗感染了phytophthora cinnamomi,一种被认为是高度易于耐受的霍尔姆oak oak Ecotyp,一种被认为是耐受性的(hu)和另一种被认为是耐受性的。为此,在温室中进行了完整的多因素测试,并监测幼苗以进行生存分析以及形态和生理属性评估。死亡率始于易感性(HU),而不是在耐受性(GR)生态型中,并且由于植物的生态型,生存率显示出不同的趋势。耐受性生态型显示出高生存率和对利用微生物治疗的更好反应。glm表明,治疗之间差异的主要原因是生态型,其次是T-复合和灌溉,并且发现生态型和肉桂疟原虫之间存在弱相互作用。光合作用(a)与蒸腾(TR)之间的线性关系显示,在DR型条件下,在DR型条件下,感染和接种植物的A/TR速率增加。受益的微生物治疗对耐受性生态型的影响更大。对Q的遗传多样性的理解和水应力对生物处理对根腐病的有效性的影响提供了有用的信息,以开发环保疾病控制方法来解决Holm Oak的下降。
摘要:脱落酸(ABA)参与调控抗旱性,而吡巴克汀抗性样(PYL)蛋白被称为脱落酸受体。为了阐明水稻中脱落酸受体之一的作用,通过 CRISPR / Cas9 在水稻中诱变 OsPYL9。基于位点特异性测序筛选出缺乏任何脱落酸靶标和 T-DNA 的纯合和杂合突变体植物,并用于形态生理学、分子和蛋白质组学分析。在胁迫条件下,突变株似乎积累了更高的脱落酸、抗氧化活性、叶绿素含量、叶片角质层蜡质和存活率,而丙二醛水平、气孔导度、蒸腾速率和维管束则较低。蛋白质组学分析发现总共有 324 种差异表达蛋白 (DEP),其中 184 种和 140 种分别上调和下调。OsPYL9 突变体在干旱和水分充足的田间条件下均表现出谷物产量增加。大多数与昼夜节律、干旱反应和活性氧有关的 DEP 在突变体植物中上调。京都基因和基因组百科全书 (KEGG) 分析显示 DEP 仅参与昼夜节律,基因本体论 (GO) 分析表明大多数 DEP 参与对非生物刺激的反应以及脱落酸激活的信号通路。蛋白质 GIGANTEA、Adagio 样和伪反应调节蛋白在蛋白质-蛋白质相互作用 (PPI) 网络中表现出更高的相互作用。因此,总体结果表明CRISPR / Cas9产生的OsPYL9突变体具有提高水稻抗旱性和产量的潜力。此外,全局蛋白质组分析为水稻抗旱的分子机制提供了新的潜在生物标记和理解。
Agrivoltaic(AV)是一种创新的水能食品Nexus方法,可通过结合太阳能生产与农业生产来提高土地利用效率。简单地说,太阳能电池板被放置在高架结构上,该结构可为下面的农业活动提供空间。最近,从光伏系统中收获雨水的整合使其具有三重土地利用目的。通过适当的设计和建模,AV系统可以降低植物和作物温度,并降低蒸发和蒸腾作用,即留下土壤和植被的水分的过程。此外,一个独特的好处是在面板下可以创建的小气候,可以帮助作物生长和生产。所有这些影响在使农场对气候变化更具韧性方面有很大的帮助。此外,在空间可用性有限的地方或分散的能源系统是访问能源的唯一选择中,该技术可能非常有帮助。该技术已在欧洲和全球北部进行了广泛的测试。联合国大学,欧洲副校长(UNU-VIE)领导一个研究机构,大学和公司的财团实施APV-MAGA项目(马里和冈比亚的Agrivoltaic Systems)。 由德国联邦教育与研究部(BMBF)资助的APV-MAGA项目是一项研发(R&D)项目,旨在建立Agrivoltaics(AV)作为一种可持续能源系统,可为当地人口提供粮食,水和电力,同时增加农业部门的恢复能力,反对气候变化。联合国大学,欧洲副校长(UNU-VIE)领导一个研究机构,大学和公司的财团实施APV-MAGA项目(马里和冈比亚的Agrivoltaic Systems)。由德国联邦教育与研究部(BMBF)资助的APV-MAGA项目是一项研发(R&D)项目,旨在建立Agrivoltaics(AV)作为一种可持续能源系统,可为当地人口提供粮食,水和电力,同时增加农业部门的恢复能力,反对气候变化。此外,该项目旨在证明综合三重土地使用系统的技术和经济可行性,并对合作伙伴国家和西非环境中水能食品Nexus内的协同作用和相互作用有更深入的了解。该项目目前正在努力在马里安装4个Agrivoltaic系统,其中1个在冈比亚。此外,该项目打算利用能源生产来建立量身定制的商业模式,包括能源的生产用途,以改善社区的生计,同时确保已安装的系统的长期可持续性。
审查的摘要目的预测了许多林地地区,尤其是在已经干旱和半干旱的气候中,例如美国西南部。对孔径的气孔调节是植物应对干旱的方式之一。有趣的是,与许多其他生态系统一样,美国西南部的主要物种具有不同的气孔行为,可以调节从等氢(例如PiñonPine)到芳族氢(例如PiñonPine)到芳基(例如,杜松)条件,表明与应力的niche分离或与众不同的策略可能会出现应力的niche分离策略。与氨基氢杜松相比,通常认为相对的piñon松树对干旱或更少的干燥耐受性更为敏感,尽管两种物种在干旱下都在干旱下关闭了气孔以避免水力衰竭,而在最近的爆发中,毫无疑问的是,在一个爆发中,与其他人(最多是piñon)的死亡量相比,与昆虫相比,在爆炸中却可能超过了昆虫。此外,没有明确的证据表明等征或芳烃策略会始终如一地提高用水量的效率。这些不同的气孔调节策略如何使木质物种能够承受恶劣的非生物条件,这在本综述中仍可以涵盖询问的主题。最近的发现,此贡献回顾并探讨了简化的气孔优化理论的使用,以评估光合作用和蒸腾作用如何响应温暖(H),干旱(D)以及加热和干旱(H+D),以供等亚氢和芳烃植物体验到相同的非生物压力。它阐明了如何简化的气孔优化理论可以在光合作用和液压适应中分开,这是由于非生物压力源引起的,以及如何将H+D与H或D单独使用H或D的互动效应纳入未来的气候模型中。总结此处的工作演示了如何桥接领域的数据以简化最佳原则,从而探讨了未来温度变化以及土壤水含量对具有不同用水策略的树种适应树种的影响。结果表明,测量和预测与简化的最佳原理之间的偏差可以解释不同物种的适应行为。
在过去几十年中,多孔媒体的流量和对流传热方面的基本和应用研究受到了学术界和工业研究人员的关注。这是由于该研究领域在广泛的工程应用中的重要性,该应用涉及多孔材料,或者可以作为多孔介质建模。其中包括地理应用(即增强的地热系统和碳存储),生物系统,太阳能系统,金属泡沫热交换器,多孔燃烧器,航空航天系统的蒸腾冷却,电子设备的热管理以及聚合物电解质燃料电池(PEFCS)。应用的其他示例包括干燥技术,催化反应堆,组织置换,药物输送,晚期医学成像和用于组织工程的多孔脚手架。广泛的讽刺应用鼓励我们在该领域工作和研究多年,我们通过其中了解了有关多孔材料中对流传热的大量信息。在该领域进行了彻底的研究之后,我们发现在多孔媒体中在对流领域执行的数学,数字和实验方法和方法有很多,并且在此问题中现有书籍和出版物已经包括在内。尽管如此,在多孔媒体中(例如,多孔媒体中的热通量分叉),高级工程应用(例如燃料电池)和新的数值方法(例如,lattice boltzmann方法)尚未包含在现有的书籍中。因此,本书试图介绍和讨论多孔媒体中对流传热的这些新方面,最集中于实践方法及其高级应用。尽管我们已经做出了彻底的努力来涵盖多孔材料中对流的最重要和讽刺的方法,挑战和应用,但作者可能已经错过了一些方面。我们希望这本书为读者(学生,教授,科学家和工程师)提供实用的方法和应用,以及在多孔材料中对流传热领域中最富有成果的信息。总的来说,拟议中的书应该由3个部分和17章组成。第一节专门介绍了多孔媒体中对流(自然和强迫)的基础。第二节分配给了多孔介质的对流主题,其中将讨论多孔介质中的芯吸和干燥,双分散多孔介质,孔隙规模分析和晶格鲍尔茨曼方法的对流。第三节专门针对多孔媒体中对流的最新且有趣的应用。因此,在本节中,提出了新发现的工业应用程序。