[1] M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor、PK Lam、N. Treps、P. Buchhave、C. Fabre、CC Harb、Phys.冻结。莱特。 98,083602 (2007)
本文探讨了贸易和环境政策如何相互补充,以解决当前三重行星气候变化,生物多样性损失和污染的危机。政治承诺,以加强各种政策中表达的环境政策和贸易政策之间的协同作用,因此有势头与环境目标保持一致。该论文强调了协同作用,例如促进环保商品和服务的贸易,确保获得能源过渡的关键原材料,支持循环供应链以及通过贸易创造更可持续的食品系统。然而,挑战包括随着与贸易相关的环境政策的扩散(TREP)的扩散,由于环境政策在各个国家的野心差异以及市场延伸和不符合的政府支持而引起的溢出效应,这可能会使低收入的国家和强力竞争竞争,这可能会导致溢出的影响。增强了国际合作 - 通过多边对话,数据透明度,能力建设和利用全球框架 - 可以解决这些挑战,从而确保贸易和环境政策相互支持。
使用基于光频率梳的量子多模资源模拟复杂量子网络 Valentina Parigi J. Nokkala、F. Arzani、F. Galve、R. Zambrini、S. Maniscalco、J. Piilo、C. Fabre、N. Treps,我们目前正在开发一个多功能实验光子平台,用于模拟复杂的量子网络。该平台由基于光频率梳泵浦的参数过程的内在多模系统组成。这些激光器的光谱由数十万个频率成分构成。非线性晶体中的参数过程将所有这些光频率耦合起来,并产生非平凡的多模高斯量子态 [1]。这些也可以同样描述为一组不同的光的光谱-时间模式,可以单独寻址并同时被压缩真空占据。这种资源可以被描绘成一个网络,其中每个节点都是一个电磁场模式,连接是涉及场正交的纠缠关系。网络结构将通过在参数化过程中塑造泵和多模同差测量来控制。该策略已部分用于在基于测量的量子计算场景中实现集群状态 [2,3]。多模状态的 Bloch-Messah 简化(对于纯态)将资源描述为单模压缩器和多端口干涉仪的集合,这是我将介绍的建立资源与复杂网络之间映射的方法的核心 [4]。我们将研究复杂结构中量子信息协议的优化,并模拟复杂有限量子环境的动态 [5]。最后,允许波长和时间多路复用的参数化过程的特定实现将模拟表现出社区结构的网络。
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
首先,我要热烈感谢 Stephanie Wehner、Hugo Zbinden 和 Andrew Shields 审阅本手稿,以及 Pascale Senellart、Gilles Zémor 和 Nicolas Treps 同意加入我的教授资格审查委员会。他们杰出的科学贡献以及他们处理研究和技术的不同方式构成了我一直试图学习的典范。我很荣幸他们同意成为我的陪审团成员,我期待着答辩。这些年来,巴黎电信一直是一个很棒的工作地点。即使我无法一一列举他们的名字,我还是要感谢我的同事、学生以及巴黎电信的行政和管理人员,他们使这所学校成为一个如此特别的地方。我要特别感谢 Michel Riguidel,他给了我直接深入欧洲量子研究的机会,这对我来说是一次美好而基础的学习经历。我还要感谢 Henri Maitre 和 Talel Abdessalem 在许多场合表达的信任和支持,这对巴黎电信和 LTCI 的量子活动发展起到了重要作用,现在在 IP Paris 和 Q UANTUM 中心的激励下也是如此。我要感谢 Philippe Grangier、Anthony Leverrier 和 Eleni Diamanti,我们经常进行激动人心甚至激烈的讨论,但始终保持着友好的精神。我还要感谢 Norbert Lütkenhaus,多年来他一直是我如此善良和值得信赖的科学建议来源。我还要感谢 Iordanis Kereni-dis 和 Eleni,感谢他们发起建立巴黎量子计算中心。这是一个绝佳的机会,可以更多地了解量子的计算机科学方面,并更好地了解 IRIF 和 Inria Secret 的优秀量子同事。特别感谢 Jean-Pierre Tillich、Frederic Magniez、Sophie Laplante、André Chailloux 和 Alex Grilo 的建议和愉快的讨论。多年来,与 Eleni Diamanti、Damian Markham 和 Elham Kashefi 一起在巴黎电信工作非常愉快。我要感谢他们给我留下了许多美好的回忆,感谢他们以独特的方式将永无止境的乐观、冷静和高工作标准结合在一起。2016 年他们离开让我感到很难过,但很高兴能继续有很多合作的机会,我对此感到非常高兴。在接下来的几年里,Gerard Memmi 和 Yves Poilane 的行动,以及 Isabelle Zaquine 和 Filippo Miatto 的激励和果断的团队努力,让我们充满期待,对此我深表感谢。